TÌm tọa độ giao điểm của paradol(P): y = x2 và đường thẳng (d): y = 2x + 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đường thẳng (d) cắt Oy tại điểm có tung độ bằng 8
Nên m+3=8⇔ m=5
Theo pt hoành độ giao điểm của (d) và (P)
Ta có:x2=2x+8x2=2x+8
⇔x2−2x−8=0x2−2x−8=0
Δ′=(−1)2−(−8)=9Δ′=(−1)2−(−8)=9
√Δ′=√9=3>0Δ′=9=3>0
Vậy pt có 2 nghiệm pb
x1=1+31=41+31=4
x2=1−31=−21−31=−2
Với x =4 thì y=x2=42=16
Với x =-2 thì y=x2=(-2)2=4
Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình
1/2 x 2 = (-1)/2 x + 3 ⇔ x 2 + x - 6 = 0
Δ = 1 - 4.1.(-6) = 25 > 0
⇒ Phương trình có 2 nghiệm phân biệt
Vậy tọa độ giao điểm của (P) và (d) là (2; 2) và (-3; 9/2)
Phương trình hoành độ giao điểm:
\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)
a. Khi \(m=-1\), (1) trở thành:
\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)
Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)
b.
\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m
Hay (d) cắt (P) tại 2 điểm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)
\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)
\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)
\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)
Hoành độ giao điểm tm pt
\(x^2-3x+2=0\Leftrightarrow x=1;x=2\)
\(\Rightarrow y=1;y=4\)
Vậy (P) cắt (d) tại A(1;1) ; B(2;4)
Chọn đáp án A
Phương trình hoành độ giao điểm của (P) và (d) là:
x 2 = 2x - 1 ⇔ x 2 - 2x + 1 = 0 ⇔ x - 1 2 = 0 ⇔ x = 1
Với x = 1 ⇒ y = 1
⇒ Tọa độ giao điểm của (P) và (d) là (1; 1)
Phương trình hoành độ giao điểm giữa (P) và (d)
\(x^2=2x+3\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Delta=\left(-2\right)^2-4.1.\left(-3\right)=16>0\)
\(\Rightarrow x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2-\sqrt{16}}{2.1}=-1\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2+\sqrt{16}}{2.1}=3\)
Với x1 =-1 \(\Rightarrow\) y1 = (-1)2 =1 \(\Rightarrow\) A(-1;1)
x2 =3 \(\Rightarrow\)y2 =32 =9 \(\Rightarrow\)B(3;9)
Vậy tọa độ giao điểm là A(-1;1) và B(3;9)