Cho tam giac ABC can tai A
Ke AH vuong goc vs BC
- Chung minh AH la tia phan giac cua goc A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
+)t/có:△ABC cân A
=>AB=AC
và góc B=góc C
+)xét △ABH và △ACH
có:góc AHB= gócAHB(=900)
AB=AC(cmt)
góc B = góc C(cmt)
=>△ABH=△ACH
b,
+)ta lại có△ABH=△ACH
=>góc BAH=góc CAH
=>AH là tia pg góc A
bài này mình làm rồi nhé bạn.Để mình chỉ cho bạn nha
A B C D E K H I
1)Xét tam giác BAE và tam giác BKE:
BEA = BEK = 90 độ
BE chung
ABE = KBE ( BE là phân giác của B )
=> Tam giác BAE = Tam giác BKE( g-c-g)
=> BA = BK( 2 cạnh tương ứng)
=> Tam giác ABK cân ở B
2)Xét tam giác ABD và tam giác KBD:
BA = BK ( cm trên)
ABD = KBD ( BD là phân giác của B)
BD chung
=> Tam giác ABD = Tam giác KBD ( c-g-c)
=> BAD = BKD = 90 độ
=>KDB = KDC = 90 độ
=> KD vuông góc với BC
3) Ta thấy : BAD + ADB + DBA = 180 độ
=> ADB + DBA = 90 độ (1)
Mà AIE = BIH ( 2 góc đối đỉnh)
Mà BIH + IHB +HBI = 180 độ
=> BIH + HBI = 90 độ (2)
Mà DBA = HBI ( BD là phân giác của B ) (3)
Từ (1),(2) và (3) => AID = ADI (4)
=> Tam giác DAI cân ở A
=> AI = AD
Xét tam giác vuông IAE (vuông ở E) và tam giác vuông DAE( vuông ở E)
AI = AD
AE chung
=> tam giác IAE = tam giác DAE(ch-cgv)
=> DAE = IAE ( 2 góc tương ứng)
=> AE là phân giác IAD
=> AK là phân giác HAC
4) Xét tam giác IAE và tam giác KAE:
AEI = KEI
EI chung
AE=EK(2 cạnh tương ứng)
=> Tam giác IAE = Tam giác KAE
=> AIE = KIE ( 2 góc tương ứng) (5)
Từ (4) và (5) =>KIE = EAD
Mà 2 góc này ở vị trí so le trong
=> IK song song với AC
Mình làm bài này là để bạn hiểu nha ko hiểu thì nói mình
(Dấu gạch ngang trên đầu thay cho dấu góc)
HUHUHUHU....... Lúc làm bài kiểm tra chưa nghĩ ra,h mới nghĩ ra
a)
Xét \(\Delta BHE\) và \(\Delta CHF\) có:
\(\widehat{B}=\widehat{C}\left(gt\right)\)
\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)
\(HB=HC\)( trong tam giác cân, đường cao cũng là đường trung tuyến)
\(\Rightarrow\Delta BHE=\Delta CHF\left(g.c.g\right)\)
\(\RightarrowĐpcm\)
A B C H 1 2
Xét tam giác vuông \(AHB\)và tam giác vuông \(AHC\)có
\(AB=AC\left(gt\right)\)
\(\widehat{B}=\widehat{C}\left(gt\right)\)
=> Tam giác vuông \(AHB\)= tam giác vuông \(AHC\)( cạnh huyền - góc nhọn )
=> \(\widehat{A_1}=\widehat{A_2}\)( hai góc tương ứng )
=> AM là tia phân giác của \(\widehat{A}\)( đpcm )