chứng minh rằng : 1+1/2+1/3+1/4+...+1/64 >4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2+1/3+1/4+….+1/63+1/6t4>3
< => (1/2+1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10+…+1/16)+(1/17+1/18+….+1/31)+(1/32+1/33+…..+1/64)>4
Mà 1/2+1/3+1/4>1/2+1/4+1/4=1
1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=1/2
Tương tự ta có 1/9+1/10+…+1/16>8/16=1/2
1/17+1/18+…+1/31>16/31=1/2
Và 1/32+1/33+…+1/64>32/64=1/2
Ta có: A = 1/2+1/3+1/4+...+1/62+1/63+1/64
A = 1+(1/2+1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10+...+1/16)+...+(1/17+1/18+....+1/32)+(1/33+1/34+...+1/64)
Ta có: 1/2+1/3+1/4>1/2+1/4+1/4=1
1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=1/8.4=1/2
1/9 +1/10+...+1/16>1/16+1/16+...1/16=1/16.8=1/2
1/33+1/34+...+1/64>1/64+1/64+...+1/64=1/64.32=1/2
Vậy A > 4
\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}+\dfrac{1}{64}\\ =\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{17}+\dfrac{1}{18}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{33}+\dfrac{1}{34}+...+\dfrac{1}{64}\right)\)
Ta thấy:
\(\dfrac{1}{3}\) lớn hơn \(\dfrac{1}{4}\)
\(\dfrac{1}{5};\dfrac{1}{6};\dfrac{1}{7}\) lớn hơn \(\dfrac{1}{8}\)
\(\dfrac{1}{9};\dfrac{1}{10};...;\dfrac{1}{15}\) lớn hơn \(\dfrac{1}{16}\)
\(\dfrac{1}{17};\dfrac{1}{18};...;\dfrac{1}{31}\) lớn hơn \(\dfrac{1}{32}\)
\(\dfrac{1}{33};\dfrac{1}{34};...;\dfrac{1}{63}\) lớn hơn \(\dfrac{1}{64}\)
\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>\dfrac{1}{2}+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{32}+\dfrac{1}{32}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{64}+\dfrac{1}{64}+...+\dfrac{1}{64}\right)\\ \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\\ \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>3\)
Vậy \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>3\)(ĐPCM)
các bạn giúp mình nhé, người làm nhanh và đúng sẽ được mình k nhé
Ta có: A = 1/2+1/3+1/4+...+1/62+1/63+1/64
A = 1+(1/2+1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10+...+1/16)+...+(1/17+1/18+....+1/32)+(1/33+1/34+...+1/64)
Ta có: 1/2+1/3+1/4>1/2+1/4+1/4=1
1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=1/8.4=1/2
1/9 +1/10+...+1/16>1/16+1/16+...1/16=1/16.8=1/2
1/33+1/34+...+1/64>1/64+1/64+...+1/64=1/64.32=1/2
Vậy A > 4
1+1/2+1/3+1/4+...+1/64 =1-1/64=63/64<3
Nên
1+1/2+1/3+1/4+...+1/64 <6
Đặt A=1/2−1/4+1/8−1/16+1/32−1/64A
=1/2−1/4+1/8−1/16+1/32−1/64
2A=1−1/2+1/4−1/8+1/16−1/32
2A =1−1/2+1/4−1/8+1/16−1/32
3A=2A+A=1−1/64<1
⇒A<1/3
k cho minh nha
đặt A=1/2-1/4+1/8-1/16+1/32-1/64
2A=1-1/2+1/4-1/8+1/16-1/32
2A-A=1-1/64 A=63/64
Vì 63/64<1/3
nên 1/2-1/4+1/8-1/16+1/32-1/64<1/3
Vậy 1/2-1/4+1/8-1/16+1/32-1/64<1/3