K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

a: Xét ΔMHQ vuông tại H và ΔPKN vuông tại K có 

MQ=PN

\(\widehat{MQH}=\widehat{PNK}\)

Do đó: ΔMHQ=ΔPKN

Suy ra: MH=PK

a: Xét ΔKMI và ΔKNH có

\(\widehat{KMI}=\widehat{KNH}\)(hai góc so le trong, MI//HN)

KM=KN

\(\widehat{IKM}=\widehat{HKN}\)(hai góc đối đỉnh)

Do đó: ΔKMI=ΔKNH

=>KI=KH

=>K là trung điểm của HI

Xét tứ giác MINH có

K là trung điểm chung của MN và HI

nên MINH là hình bình hành

b: Ta có: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường

=>O là trung điểm chung của MP và NQ

Xét ΔNMP có

PK,NO là các đường trung tuyến

PK cắt NO tại H

Do đó: H là trọng tâm của ΔNMP

Xét ΔMNP có

PK là trung tuyến

H là trọng tâm

Do đó: \(PH=\dfrac{2}{3}PK\)

PH+HK=PK

=>\(HK+\dfrac{2}{3}PK=PK\)

=>\(HK=\dfrac{1}{3}PK\)

=>PH=2KH

mà KI=2KH(K là trung điểm của IH)

nên PH=HI

=>H là trung điểm của PI

c: Xét ΔMNP có

NO là đường trung tuyến

H là trọng tâm

Do đó: OH=1/3NO

=>OH=1/3QO

QO+OH=QH

=>\(\dfrac{1}{3}QO+QO=QH\)

=>\(QH=\dfrac{4}{3}QO\)

=>\(\dfrac{QO}{QH}=\dfrac{3}{4}\)

Xét ΔQHP có OF//HP

nên \(\dfrac{QO}{QH}=\dfrac{QF}{QP}\)

=>\(\dfrac{QF}{QP}=\dfrac{3}{4}\)

1 tháng 1 2024

giúp mik với ak

a: \(NP=\sqrt{12^2+16^2}=20\left(cm\right)\)

Xét ΔMNP có MQ là phân giác

nên QN/MN=QP/MP

=>QN/3=QP/4=(QN+QP)/(3+4)=20/7

=>QN=60/7cm; QP=80/7cm

b: QE//MN

=>PQ/PN=EQ/MN

=>EQ/12=80/7:20=4/7

=>EQ=48/7cm

c: MH=12*16/20=9,6cm

\(MQ=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\left(cm\right)\)

\(HQ=\sqrt{MQ^2-MH^2}=\dfrac{48}{35}\left(cm\right)\)

xét △MIN và △QMN có

Iˆ=Mˆ(=900)I^=M^(=900)

NˆchungN^chung

=>△MIN ∼ △QMN (g.g)(đpcm)

b) vì MNPQ là hình chữ nhật

=> NM//PQ

=> N1ˆ=Q1ˆ(SLT)N1^=Q1^(SLT)

XÉT △MIN và △MPQ có

Iˆ=Pˆ(=900)I^=P^(=900)

N1ˆ=Q1ˆ(cmt)N1^=Q1^(cmt)

=> △MIN ∼ △MPQ (g.g)(đpcm)

c xét △MIQ và △ NMQ có

Iˆ=Mˆ(=900)I^=M^(=900)

QˆchungQ^chung

=> △MIQ ∼ △ NMQ (g.g)

=> MQQN=IQMQMQQN=IQMQ

=> MQ.MQ=QN.QI

=> MQ2=QN.QI(đpcm)

d>xét △MNQ có Mˆ=900M^=900 theo đl pi ta go ta có

QN2 =QM2+MN2

⇔ QN2=32+42

⇔ QN2=25

⇔ QN=5 (cm)

vì MNPQ là hình cữ nhật

=> QM=NP=3cm

vì △MIQ ∼ △ NMQ (theo c)

=> MINM=MQNQ=MI4=35MINM=MQNQ=MI4=35

=> MI= 4.35=2,4(cm)4.35=2,4(cm)

vậy MI=2,3 cm

 Mình làm đâị hoing bt đúng ko nhé! chúc bạn học tốt!

28 tháng 3 2021

a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)

a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)vv

5 tháng 4 2021

câu a phải làm như này chứ

A. Xét tam giác NMA và tam giác NPB có:

NM=NP ( tam giác NMP cân)

MA=PB (gt) 

Góc M= góc P (tam giác NMP cân )

=> tam giác NMA= tam giác NPB( c.g.c)

=> NA=NB( hai cạnh t.ứng)

=> tam giác NAB cân

 

 

a: ΔMNP cân tại M

mà MH là đường cao

nên H là trung điểm của NP

b: NH=PH=2cm

=>\(MH=\sqrt{5^2-2^2}=\sqrt{21}\simeq4,6\left(cm\right)\)

c: Xét ΔMNI và ΔMPI có

MN=MP

góc NMI=góc PMI

MI chung

=>ΔMNI=ΔMPI