Tìm x :
x2x chia hết cho cả 2 và 9
x > 1 ; x và 210 là 2 số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x ∈ N
a) 2x chia hết cho 12 ⇒ 2x ∈ B(12)
2x chia hết cho 30 ⇒ 2x ∈ B(30)
Mà x có hai chữ số ⇒ 10 ≤ x ≤ 99
\(\Rightarrow2x\in BC\left(12;30\right)\)
Mà: \(B\left(12\right)=\left\{0;12;24;36;48;60;72;84;96;108;...\right\}\)
\(B\left(30\right)=\left\{0;30;60;90;120;...\right\}\)
\(\Rightarrow BC\left(12;30\right)=\left\{0;60;...\right\}\)
\(\Rightarrow2x=60\)
\(\Rightarrow x=\dfrac{60}{2}\\ \Rightarrow x=30\)
b) \(9^{x+2}-9^{x+1}+9^x=657\)
\(\Rightarrow9^x\cdot\left(9^2-9+1\right)=957\)
\(\Rightarrow9^x\cdot\left(81-8\right)=657\)
\(\Rightarrow9^x\cdot73=657\)
\(\Rightarrow9^x=9\)
\(\Rightarrow9^x=9^1\)
\(\Rightarrow x=1\)
bạn có thể giải giùm mk bài tính nhanh đc ko??? Mk đang cần gấp á. Cảm ơn bạn nhiều nha!
vì x chia hết cho 9 nên tổng các chữ số cũng chia hết cho 9 và x phải là chẵn để chia hết cho 2
vậy x = 8
Vì số chia hết cho 2 có số tận cùng là 0 ; 2 ; 4 ; 6; 8
khi x = 0 loại
=> x2x chia hết cho 2 xó dạng là :
222 ; 424 ; 626 ; 828
mà x2x chia hết cho 9 nên
x + 2 + x chia hết cho 9
khi x = 2 => x2x = 222 k chia hết cho 9 ( loại )
khi x = 4 => x2x = 424 không chia hết cho 9 ( loại )
Khi x = 6 => x2x = 626 không chia hết cho 9 ( loại )
khi x = 8 => x2x = 828 chia hết cho 9 ( thỏa mãn )
Vậy x = 8
Do \(3x-1⋮y\) và \(3y+1⋮x\)nên \(\left(3x-1\right)\left(3y+1\right)⋮xy\)
\(\Rightarrow9xy+3x+3y+1⋮xy\)
Mà \(9xy⋮xy\)
\(\Rightarrow\frac{3x}{y}+3+y\frac{1}{y}⋮x\)
Do vai trò của x , y như nhau , nên giả sử
\(\Rightarrow\frac{x}{y}\le1\)
\(\Rightarrow\frac{3x}{y}+3+\frac{1}{y}< 7\)
\(\Rightarrow1< x< 7\)
\(\Rightarrow x=2;3;4;5;6\)
Thay x vào 3x + 1 \(⋮\)y và 3y-1\(⋮x\)
a) Ta có: \(\left|\left|2x+1\right|-2\right|=3\)
\(\Leftrightarrow\left|2x+1\right|-2=3\)
\(\Leftrightarrow\left|2x+1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)