K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(x\notin\left\{0;\frac{3}{2}\right\}\)

Ta có: \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)

\(\Leftrightarrow\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}-\frac{5\left(2x-3\right)}{x\left(2x-3\right)}=0\)

\(\Leftrightarrow x-3-5\left(2x-3\right)=0\)

\(\Leftrightarrow x-3-10x+15=0\)

\(\Leftrightarrow-9x+12=0\)

\(\Leftrightarrow-9x=-12\)

hay \(x=\frac{4}{3}\)(tm)

Vậy: \(x=\frac{4}{3}\)

10 tháng 4 2020

camr ơn cậu ạ

6 tháng 2 2019

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

29 tháng 3 2018

Violympic toán 8

ĐKXĐ: \(x\notin\left\{-3;1\right\}\)

Ta có: \(\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}-\frac{2x}{x-1}\)

\(\Leftrightarrow\frac{\left(2x-5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)

Suy ra: \(\left(2x-5\right)\left(x-1\right)-2x\left(x+3\right)=4\)

\(\Leftrightarrow2x^2-2x-5x+5-2x^2-6x=4\)

\(\Leftrightarrow-13x+5=4\)

\(\Leftrightarrow-13x=4-5=-1\)

hay \(x=\frac{1}{13}\)(nhận)

Vậy: \(S=\left\{\frac{1}{13}\right\}\)

30 tháng 8 2021

a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)

TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)

TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)

b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)

c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)

\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)

30 tháng 5 2015

giải phaj bỏ ngoặc nhức đầu lắm

20 tháng 8 2020

a. | x + 1 | = 3

<=> x + 1 = 3 hoặc x + 1 = - 3

<=> x = 2 hoặc x = - 4

b. | x | = 1 - x

<=> x = 1 - x hoặc x = - 1 + x ( loại )

<=> x = 1/2 

c. | 1 - x | = x

<=> 1 - x = x hoặc 1 - x = - x ( loại )

<=> x = 1/2

d. | 2x - 3 | = 2x - 3

<=> 2x - 3 = 2x - 3 hoặc 2x - 3 = - 2x + 3

<=> với mọi x > 0 hoặc 2x - 3 = - 2x + 3

<=> với mọi x > 0 hoặc x = 0

e. | 3x + 1 | = - 3x - 1

<=> 3x + 1 = - 3x - 1 hoặc 3x + 1 = 3x + 1

<=> x = 1/3 hoặc với mọi x < 0

g. | 5 - 2x | = 2x - 5

<=> 5 - 2x = 2x - 5 hoặc 5 - 2x = - 2x + 5

<=> x = 5/2 hoặc với mọi x < 0 

1 tháng 4 2020

\(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}ĐKXĐ:x\ne-1;-3\)

\(\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)

\(2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x+1\right)\left(x-1\right)\)

\(4x^2+12x+18=-2x-5x^2+5\)

\(4x^2+12x+18+2x+5x^2-5=0\)

\(9x^2-14x+13=0\)

=> vô nghiệm