Cho đoạn thẳng BC=5cm. A di động sao AB+AC=6cm
Tìm Max\(\sin\frac{BAC}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi MA = x => MB = 8 - x (0 < x < 8)
Khi đó MC2 = AM2 + AC2 = 42 + x2 = 16 + x2
=> \(MC=\sqrt{x^2+16}\)
Tương tự ta được
MD = \(\sqrt{\left(8-x\right)^2+4}\)
Khi đó MC + MD = \(\sqrt{x^2+4^2}+\sqrt{\left(8-x\right)^2+2^2}\)
\(\ge\sqrt{\left(x+8-x\right)^2+\left(4+2\right)^2}=10\)
Dấu "=" xảy ra <=> \(\dfrac{x}{4}=\dfrac{8-x}{2}\Leftrightarrow x=\dfrac{16}{3}\)
Kết quả không đổi với AM = 8 - x ; MB = x
Khi đó Min = 10 với x = 8/3
Vậy Min MD + MC = 10 khi MA = 16/3 cm hoặc MB = 16/3 cm
a: Ta có: ΔABC cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
Vì I là trung điểm của BC nên IB=IC=BC/2=3cm
=>AI=4cm
b: Xét tứ giác AMIN có \(\widehat{AMI}+\widehat{ANI}+\widehat{MAN}+\widehat{MIN}=360^0\)
nên \(\widehat{MIN}=60^0\)(2)
Xét ΔAMI vuông tại M và ΔANI vuông tại N có
AI chug
\(\widehat{MAI}=\widehat{NAI}\)
Do đó: ΔAMI=ΔANI
Suy ra: IM=IN
=>ΔIMN cân tại I(1)
Từ (1) và (2) suy raΔIMN đều
Từ đầu năm tới h chưa gặp dạng nào như này , toàn học đường tròn
https://h.vn/cau-hoi/moi-nguoi-ko-giup-cung-dc-a-bai-nay-hoi-hoi-khocho-doan-thang-ab8cm-tren-cung-mot-nua-mat-phang-bo-ab-lan-luot-ke-cac-doan-thang-ac-va-bd-vuong-goc-voi-doan-thang-ab-tai-ab-sao-cho-acfra.4190207579233
mk vừa giải bên h bạn vào xem thử có đúng không
Vẽ AD là đường phân giác của \(\Delta ABC\)
Vẽ BH _|_ AD, CK _|_ AD (H;K \(\in\) AD)
Ta có: \(\widehat{BAH}=\widehat{CAK}=\frac{\widehat{BAC}}{2}\)
Xét tam giác BAH vuông tại H, theo hệ thức giữa các cạnh và các góc của 1 tam giác vuông ta có:
\(BH=AB\sin\widehat{BAH}=AB\cdot\sin\frac{\widehat{BAC}}{2}\)
Tương tự \(CK=AC\cdot\sin\frac{\widehat{BAC}}{2}\)
\(BH\le BD\left(BH\perp HD\right);CK\le CD\left(CK\perp KD\right)\)
Nên \(BH+CK\le BD+CD=BC\)
Do đó: \(\left(AB+AC\right)\sin\frac{\widehat{BAC}}{2}\le BC\Rightarrow\sin\frac{\widehat{BAC}}{2}\le\frac{5}{6}\)
Dấu "=" xảy ra <=> H,D,K trùng nhau
Vậy GTLN \(\sin\frac{\widehat{BAC}}{2}=\frac{5}{6}\)