tìm N sao cho
a, 2 mũ N +22 ra tổng là số nguyên tố
b, 13N là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
Nếu $n=0$ thì $2^n+22=23$ là snt (thỏa mãn)
Nếu $n>0$ thì $2^n$ chẵn, $22$ chẵn
$\Rightarrow 2^n+22$ chẵn. Mà $2^n+22>2$ nên không thể là snt (trái đề bài)
Vậy $n=0$
b. $13n$ là snt khi $n<2$
Mà $n$ là snt nên $n=0,1$. Nếu $n=0$ thì $13n=0$ không là snt
Nếu $n=1$ thì $13n=13$ là snt (tm)
a) \(2^n+22\)
Với \(n\ge1\)thì \(2^n⋮2,22⋮2\)khi đó \(2^n+22⋮2\)mà \(2^n+22>2\)nên khi đó \(2^n+22\)là hợp số.
Với \(n=0\): \(2^n+22=23\)thỏa mãn.
Vậy \(n=0\).
b) \(13n\)
Với \(n\ge2\)thì \(13n⋮13\)mà \(13n>13\)nên là số hợp số.
\(n=1\)thỏa mãn.
a,
1000! = 1.2.3...1000
+) Các số chứa đúng lũy thừa 73 (= 343) từ 1 đến 1000 là: 343; 686 => có 2 x 3 = 6 thừa số 7
+) Các số chứa lũy thừa 72 từ 1 đến 1000 là: 49; .....; 980 => có (980 - 49) : 49 + 1= 20 số , trừ 2 số 343; 686
=> có 18 số chứa đúng lũy thừa 72 => 18 x 2 = 36 thừa số 7
+) Các số chứa lũy thừa 7 từ 1 đến 1000 là: 7 ; 14; ...; 994 => có (994 - 7) : 7 + 1 = 142 số , trừ 20 chứa 72 trở lên
=> có 142 - 20 = 122 số chứa đúng 1 thừa số 7
Vậy có tất cả 6 + 36 + 122 = 164 thừa số 7
=> 1000! phân tích ra thừa số nguyên tố chứa 7164
b,
n2 + 2n = n2 + 2n.1 = n2 + 2n.1 + 1 - 1 = n2 + 2n.1 + 12 - 1 = (n2 + 2n.1 + 12) - 1
Sử dụng hằng đẳng thức: (Bạn tự tìm hiểu về 7 hằng đẳng thức đáng nhớ)
\(\Rightarrow\) (n+1)2 - 1
mà (n+1)2 là số chính phương
\(\Rightarrow\) (n+1)2 - 1 chỉ có thể là 0
\(\Rightarrow\) n chỉ có thể là 0
-Nếu n là số chẵn thì n4+4n là số chẵn lớn hơn 2 nên là hợp số
-Nếu n là số lẻ , đặt n=2k+1 với k là số tự nhiên lớn hơn 0
n4+42k+1=(n2)2+(2.4k)2-2.n2.2.4k
=(n2+2.4k)2-(2n.2k)2
=(n2+2.4k-2n.2k)(n2+2.4k+2n.2k)
Vì n2+2n.4k+2n.2k > n2+2.4k-2n.2k=n2+4k-2n.2k+4k
=(n-2k)2+4k>4
Suy ra n4+42k+1 là hợp số
Vậy n4+4n là hợp số với mọi số tự nhiên n >1
cảm ơn bạn nha