Cho đường thẳng d: 2(m-1)x + (m-2)y=2
a, Tìm m để đường thẳng d cắt P: y= x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\left\{{}\begin{matrix}m+2=-1\\-2m\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\m\ne-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow m=-3\\ b,\text{PTHDGD: }2x+1=\left(m+2\right)x-2m\\ \text{Thay }x=-2\Leftrightarrow-2m-4-2m=-3\\ \Leftrightarrow-4m=1\Leftrightarrow m=-\dfrac{1}{4}\)
Sửa đề: x+2y=3
Tọa độ giao là:
x-y=1 và x+2y=3
=>x=5/3 và y=2/3
Thay x=5/3 và y=2/3 vào (d), ta được"
5/3(m+2)-m^2=2/3
=>5/3m+10/3-m^2-2/3=0
=>-m^2+5/3m+8/3=0
=>-3m^2+5m+8=0
=>-3m^2+8m-3m+8=0
=>(3m-8)(-m-1)=0
=>m=-1 hoặc m=8/3
Ta có: y=x-1
nên x-1=y
=>x-y=1
Tọa độ giao điểm của hai đường x-y=1 và x-2y=3 là:
\(\left\{{}\begin{matrix}x-y=1\\x-2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Thay x=-1 và y=-2 vào y=(m+2)x-m2, ta được:
\(-m^2+\left(-1\right)\cdot\left(m+2\right)=-2\)
\(\Leftrightarrow-m^2-m-2=-2\)
\(\Leftrightarrow m^2+m=0\)
=>m=0 hoặc m=-1
b: Thay x=1 vào y=x+1, ta đc:
y=1+1=2
Thay x=1 và y=2 vào (d), ta được;
m+1-2=2
=>m+1=2
=>m=1
c: Tọa độ A là:
y=0 và (m+1)x-2=0
=>x=2/m+1 và y=0
=>OA=2/|m+1|
Tọa độ B là:
x=0 và y=-2
=>OB=2
Để góc OAB=45 độ thì OA=OB
=>|m+1|=1
=>m=0 hoặc m=-2
\(a,\Leftrightarrow A\left(0;2\right)\in\left(d\right)\Leftrightarrow3m-1=2\Leftrightarrow m=1\\ b,\Leftrightarrow m-2=-2\Leftrightarrow m=0\\ c,\Leftrightarrow\left\{{}\begin{matrix}m-2=3\\3m-1\ne-2\end{matrix}\right.\Leftrightarrow m=5\\ d,\text{PT hoành độ giao điểm: }\left(m-2\right)x+3m-1=3x-2\\ \Leftrightarrow x\left(m-2-3\right)+3m-1+2=0\\ \Leftrightarrow x\left(m-5\right)=-3m-1\Leftrightarrow x=\dfrac{-3m-1}{m-5}\)
Vì 2 đt cắt bên trái trục tung nên hoành độ âm
\(\Leftrightarrow x< 0\Leftrightarrow\dfrac{-3m-1}{m-5}< 0\Leftrightarrow\dfrac{3m+1}{m-5}>0\Leftrightarrow\left[{}\begin{matrix}m>5\\m< -\dfrac{1}{3}\end{matrix}\right.\)
\(e,\text{Gọi điểm cố định mà }\left(d\right)\text{ luôn đi qua là }M\left(x_0;y_0\right)\\ \Leftrightarrow\left(m-2\right)x_0+3m-1=y_0\\ \Leftrightarrow mx_0-2x_0+3m-1-y_0=0\\ \Leftrightarrow m\left(x_0+3\right)-\left(2x_0+y_0+1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+3=0\\2x_0+y_0+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=5\end{matrix}\right.\Leftrightarrow M\left(-3;5\right)\\ \text{Vậy }\left(d\right)\text{ luôn đi qua }M\left(-3;5\right)\)
Để đường thẳng $d:2(m-1)x+(m-2)y=2$ cắt $P:y=x$ thì hệ phương trình \(\left\{{}\begin{matrix}2\left(m-1\right)x+\left(m-2\right)y=2\\y=x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\left(m-1\right)x+\left(m-2\right)y=2\\-x+y=0\end{matrix}\right.\)
phải có nghiệm tức là \(\frac{2\left(m-1\right)}{-1}\ne\frac{m-2}{1}\Leftrightarrow-2m+2\ne m-2\Leftrightarrow3m\ne4\Leftrightarrow m\ne\frac{4}{3}\)
KL: ..............