Giải Pt: a) (x+1)2(x+2)2 + (x-1)2(x-2)=12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
Bài 1 :
a )Thế \(m=1\) vào phương trình ta được :
\(2x^2-3x-2=0\)
\(\Leftrightarrow2x^2+x-4x-2=0\)
\(\Leftrightarrow x\left(2x+1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{-\frac{1}{2};2\right\}\)
b ) Theo hệ thức vi-et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\frac{6m-3}{2}\\x_1x_2=\frac{-3m+1}{2}\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(\frac{6m-3}{2}\right)^2-\frac{2\left(-3m+1\right)}{2}\)
\(=\frac{36m^2-36m+9}{4}+3m-1\)
\(=\frac{36m^2-36m+9+12m-4}{4}\)
\(=\frac{36m^2-24m+5}{4}\)
\(=\frac{36m^2-24m+4+1}{4}\)
\(=\frac{\left(6m-2\right)^2+1}{4}\ge\frac{1}{4}\)
Vậy GTNN của A là \(\frac{1}{4}\) . Dấu bằng xảy ra khi \(x=\frac{1}{3}\)
bai 1
1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0
<=>(2x)^2-5^2=0
<=>(2x+5)*(2x-5)=0
<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết đề như thế này gây khó đọc.
\(\dfrac{x-1}{x-2}+\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow x^2+x-2+5x-10=12+x^2-4\)
\(\Leftrightarrow6x-12=8\)
=>6x=20
hay x=10/3(nhận)
x−1x−2+5x+2=12x2−4+1x−1x−2+5x+2=12x2−4+1
⇔x2+x−2+5x−10=12+x2−4⇔x2+x−2+5x−10=12+x2−4
⇔6x−12=8⇔6x−12=8
=>6x=20
hay x=10/3(nhận)
Sửa đề: \(\left(x-1\right)^2-\left(3x+2\right)\left(x-12\right)=\left(x^2+1\right)\left(x-2\right)-x^2\)
\(\Leftrightarrow x^3-3x^2+3x-1-\left(3x^2-36x+2x-24\right)=x^3-2x^2+x-2-x^2\)
=>\(x^3-3x^2+3x-1-3x^2+34x+24=x^3-3x^2+x-2\)
=>\(x^3-6x^2+37x+23-x^3+3x^2-x+2=0\)
=>\(-3x^2+36x+25=0\)
=>\(x=\dfrac{18\pm\sqrt{399}}{3}\)
a/ \(2x-3=5x+2\)
\(\Leftrightarrow5x-2x=-3-2\)
\(\Leftrightarrow3x=-5\Leftrightarrow x=-\dfrac{5}{3}\)
Vậy..
b. \(2x\left(x-1\right)=2x+2\)
\(\Leftrightarrow2x^2-4x-2=0\)
\(\Leftrightarrow x^2-2x-1=0\)
\(\Leftrightarrow\left(x-1+\sqrt{2}\right)\left(x-1-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1-\sqrt{2}\\x=1+\sqrt{2}\end{matrix}\right.\)
Vậy...
c/ ĐKXĐ : \(x\ne\pm2\)
\(\dfrac{x+2}{x-2}-\dfrac{x^2}{x^2-4}=\dfrac{6}{\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{6\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow x^2+4x+4-x^2=6x-12\)
\(\Leftrightarrow2x-16=0\)
\(\Leftrightarrow x=8\)
Vậy..
\(\Leftrightarrow\left(x^2+2x+1\right)\left(x+2\right)+\left(x^2-2x+1\right)\left(x-2\right)=12\)
\(\Leftrightarrow x^3+2x^2+2x^2+4x+x+2+x^3-2x^2-2x^2+4x+x-2=12\)
\(\Leftrightarrow2x^3+10x=12=>2x^3+10-12=0=>2x^3-2x+12x-12=0\)
\(=>2x\left(x^2-1\right)+12\left(x-1\right)=0=>2\left(x-1\right)\left[x\left(x^2-1\right)+6\right]=0=>x=1\)
1 là đề sau hay 2 là pt vô nghiệm