Tìm các cặp số nguyên (x,y) sao cho: 3x2-y2-2xy-2x-2y+40=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt y = x + k với k \(\inℤ\)
Khi đó 3x2 - y2 - 2xy - 2x - 2y + 40 = 0
<=> 3x2 - (x + k)2 - 2x(x + k) - 2x - 2(x + k) + 40 = 0
<=> k2 + 4xk + 4x + 2k - 40 = 0
<=> (k + 1)2 + 4x(k + 1) = 41
<=> (k + 1)(4x + k + 1) = 41
Ta lập bảng ta được :
k + 1 | 1 | 41 | -1 | -41 |
4x + k + 1 | 41 | 1 | -41 | -1 |
x | 10 | -10 | -10 | 10 |
k | 0 | 40 | -2 | -42 |
lại có y = x + k
ta được các cặp (x;y) cần tìm là (10;10) ; (-10 ; 30) ; (-10 ; -12) ; (10;-32)
a: \(x^2+3y^2-4x+6y+7=0\)
\(\Leftrightarrow x^2-4x+4+3y^2+6y+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x,y\right)=\left(-2;1\right)\)
2x2+y2−6x+2xy−2y+5=02x2+y2−6x+2xy−2y+5=0
⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0
⇔(x−2)2+(x+y)2−2(x+y)+1=0⇔(x−2)2+(x+y)2−2(x+y)+1=0
⇔(x−2)2+(x+y
MÁY TÔI LỖI ,SORRY
2x2+y2−6x+2xy−2y+5=02x2+y2−6x+2xy−2y+5=0
⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0
⇔(x−2)2+(x+y)2−2(x+y)+1=0⇔(x−2)2+(x+y)2−2(x+y)+1=0
⇔(x−2)2+(x+y
x+2xy+2y+6=0
x . (1 + 2y) + 2y + 6 = 0
x . (1 + 2y) + 2y + 1 = 5
(1 + 2y) . (x + 1) = 5
Phần còn lại làm đc nốt chưa
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
Ta viết phương trình về dạng: \(2x^2-\left(2y-1\right)x+\left(2y^2+y-10\right)=0\)
Coi đây là phương trình bậc 2 theo ẩn x thì \(\Delta_x=\left(2y-1\right)^2-8\left(2y^2+y-10\right)=-12y^2-12y+81\)
Điều kiện để phương trình có nghiệm là \(\Delta_x\ge0\)hay \(-12y^2-12y+81\ge0\)\(\Leftrightarrow\frac{-1-2\sqrt{7}}{2}\le y\le\frac{-1+2\sqrt{7}}{2}\)mà y nguyên nên \(-3\le y\le2\)
Lập bảng:
\(y\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) |
\(x\) | \(-1\) | \(\varnothing\) | \(-3\) | \(2\) | \(\varnothing\) | \(0\) |
Vậy phương trình có 4 cặp nghiệm nguyên \(\left(x,y\right)=\left\{\left(2,0\right);\left(0,2\right);\left(-1,-3\right);\left(-3;-1\right)\right\}\)
Ta có: 2xy + x - 2y = 4
=> 2y(x - 1) + x = 4
=> 2y(x - 1) + x - 1 = 3
=> 2y(x - 1) + (x - 1) = 3
=> (x - 1).(2y + 1) = 3
=> x-1 và 2y+1 là Ư(3)={-3;-1;1;3}
Ta có bảng:
x - 1 | -1 | -3 | 1 | 3 |
2y + 1 | -3 | - 1 | 3 | 1 |
x | 0 | -2 | 2 | 4 |
y | -2 | -1 | 1 | 0 |
Ta có :
2xy + x - 2y = 4
\(\Rightarrow\) 2y ( x - 1 ) + x = 4
\(\Rightarrow\) 2y ( x - 1 ) + x - 1 = 3
\(\Rightarrow\) 2y ( x - 1 ) + ( x - 1 ) = 3
\(\Rightarrow\) ( x - 1 ) . ( 2y + 1 ) = 3
\(\Rightarrow\) x - 1 và 2y + 1 là Ư(3) = { - 3 ; - 1 ; 1 ; 3 }
Ta có bảng :
x - 1 | - 1 | - 3 | 1 | 3 |
2y + 1 | - 3 | - 1 | 3 | 1 |
x | 0 | - 2 | 2 | 4 |
y | - 2 | - 1 | 1 | 0 |
Vậy ...
2xy+x-2y=4
x(2y+1)-2y=4
x(2y+1)-2y-1=3
x(2y+1)-(2y+1)=3
(x-1)(2y+1)=3
Vì x;y là số nguyên => x-1;2y+1 là số nguyên
=> x-1;2y+1 Ư(3)
Ta có bảng:
x-1 | 1 | 3 | -3 | -1 |
2y+1 | 3 | 1 | -1 | -3 |
x | 2 | 4 | -2 | 0 |
y | 1 | 0 | -1 | -2 |
Vậy cặp số nguyên (x;y) cần tìm là: (2;1) ; (4;0) ; (-2;-1) ; (0;-2).
3x^2-y^2-2xy-2x-2y+40=0
<=>(x-y)(3x+y)-(3x+y)+(x-y)+40=0
Đặt x-y=a: 3x+y=b
PT<=>ab+a-b-1=-41
<=>(b+1)(a-1)=-41
Đến đây bạn tự giải nốt nha. cho xin phát :)
nguyễn trí tâm tks bn