cho phân số a/b với b khác 0 cmr nếu a>b thì a/b >1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$\frac{a}{b}<1\Rightarrow a< b\Rightarrow a-b<0$
Xét hiệu $\frac{a}{b}-\frac{a+m}{b+m}=\frac{am-bm}{b(b+m)}=\frac{m(a-b)}{b(b+m)}<0$ do $a-b<0$ và $a,b,m$ là số tự nhiên $>0$
$\Rightarrow \frac{a}{b}<\frac{a+m}{b+m}$
b.
$\frac{a}{b}>1\Rightarrow a> b\Rightarrow a-b>0$
Xét hiệu $\frac{a}{b}-\frac{a+m}{b+m}=\frac{am-bm}{b(b+m)}=\frac{m(a-b)}{b(b+m)}>0$ do $a-b>0$ và $a,b,m$ là số tự nhiên $>0$
$\Rightarrow \frac{a}{b}>\frac{a+m}{b+m}$
`Bài 2:\(\frac{a}{b}< 1\Rightarrow\frac{a}{b}.b< 1.b\Rightarrow a< b\left(đpcm\right)\)
\(a< b\Rightarrow a:b< b:b\Rightarrow\frac{a}{b}< 1\left(đpcm\right)\)
\(\frac{a}{b}>1\Rightarrow\frac{a}{b}.b>1.b\Rightarrow a>b\left(đpcm\right)\)
Tương tự
\(\frac{a}{-b}=\frac{-a}{b}\Rightarrow\left(-a\right).\left(-b\right)=a.b\)
\(\Rightarrow ab=ab\)
\(\frac{-a}{-b}=\frac{a}{b}\Rightarrow\left(-a\right).b=\left(-b\right).a\) hoặc \(\frac{-a}{-b}=\frac{a}{b}\Rightarrow\frac{a}{b}=\frac{a}{b}\Rightarrow ab=ab\)
\(\Rightarrow-ab=-ab\)
Với a>b:
a=b+m(m số tự nhiên bất kì.
b+m phần b bằng 1 cộng m phần b.
Mà m phần b lớn hơn 0 nên nó lớn hơn 1.
Với ngược lại chứng minh tương tự thôi.
Chúc em học tốt^^
Với a>b:
a=b+m(m số tự nhiên bất kì.
b+m phần b bằng 1 cộng m phần b.
Mà m phần b lớn hơn 0 nên nó lớn hơn 1.
Với ngược lại chứng minh tương tự thôi.
Chúc em học tốt^^
Ta có :
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< ac\Leftrightarrow ab+ad< ab+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\)\(\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
a) \(\frac{a}{b}>1\Rightarrow\frac{a}{b}.b>1.b\Rightarrow a>b\)
\(a>b\Rightarrow\frac{a}{b}>\frac{b}{b}\Rightarrow\frac{a}{b}>1\)
b) \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}.b< 1.b\Rightarrow a< b\)
\(a< b\Rightarrow\frac{a}{b}< \frac{b}{b}\Rightarrow\frac{a}{b}< 1\)