K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{5}{\sqrt{x}+1}>2\\ \frac{5}{\sqrt{x}+1}>\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\\ 5>2.\left(\sqrt{x}+1\right)\\ 5>2\sqrt{x}+2\\ 3>2\sqrt{x}\\ \sqrt{x}=\frac{3}{2}\)

x= 9/4

đỗ c3 nhá :))

23 tháng 10 2021

\(\frac{5}{\sqrt{x}+1}>2\)

\(\Leftrightarrow\sqrt{x}+1< \frac{5}{2}\)

\(\Leftrightarrow\sqrt{x}< \frac{3}{2}\)

\(\Leftrightarrow x< \frac{9}{4}\)

11 tháng 8 2020

a) ĐKXĐ: x \(\ge\)0; x \(\ne\)4

Ta có: P = \(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{x+5}{x-\sqrt{x}-2}\)

P = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\frac{x+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{x-3\sqrt{x}+2-x-4\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{-\left(x+6\sqrt{x}+\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}\)

b) Với x \(\ge\)0 và x \(\ne\)4, ta có:

P > -1 <=> \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}>-1\)

<=> \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}+1>0\)

<=> \(\frac{\sqrt{x}-2-\sqrt{x}-6}{\sqrt{x}-2}>0\)

<=> \(\frac{-8}{\sqrt{x}-2}>0\)

Do -8 < 0 => \(\sqrt{x}-2< 0\) <=> \(\sqrt{x}< 2\)<=> \(x< 4\)

mà x \(\ge0\) => 0 \(\le\)\(< \)4

c)Với x \(\ge\)0 và x \(\ne\)4

Để P \(\in\)Z <=> -8 \(-8⋮\sqrt{x}-2\)

<=> \(\sqrt{x}-2\inƯ\left(-8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Do \(\sqrt{x}\ge0\) <=> \(\sqrt{x}-2\ge-2\) => \(\sqrt{x}-2\in\left\{-2;-1;1;2;4;8\right\}\)

Lập bảng: 

\(\sqrt{x}-2\)      -2 -1 1 2 4 8
   x    0  1 9 16 36 100

Vậy ....

11 tháng 10 2019

 a)

\(M=\frac{-(\sqrt{x}+1)\left(\sqrt{x}+2\right)}{-\left(\sqrt{x}-2\right)\left(x+2\right)}+\frac{-2\sqrt{x}\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)\left(x+2\right)}+\frac{2+5\sqrt{x}}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{-x-3\sqrt{x}-2-2x+4\sqrt{x}+2+5\sqrt{x}}{4-x}\)

\(=\frac{-3x+6\sqrt{x}}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-3\sqrt{x}\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-3\sqrt{x}}{-\sqrt{x}-2}\)

21 tháng 11 2018

giúp mk với mk cần gấp

9 tháng 11 2019

\(A=\frac{15\sqrt{x}-11}{x-\sqrt{x}+3\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{45\sqrt{x}-11}{\left(\sqrt{x}+3\right)(\sqrt{x}-1)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{45\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{37\sqrt{x}-5x-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

đè hinh như là 6\(\sqrt{x}\) nhi bạn