Tìm 2 số tự nhiên có tổng bằng 432 và ƯCLN của chúng bằng 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số tự nhiên cần tìm là a;b
Vì ƯCLN(a;b)=36
\(\Rightarrow\hept{\begin{cases}a=36.m\\b=36.n\end{cases}\left(m;n\right)}=1\)
Theo đầu bài ta có:
\(a+b=432\)
\(\Rightarrow36m+36n=432\)
\(\Rightarrow36\left(m+n\right)=432\)
\(\Rightarrow m+n=432:36=12\)
Vì (m;n)=1 mà 12=1+11=5+7=11+1=7+5
Ta lập bảng
m 1 11 5 7 n 11 1 7 5 a 36 396 180 252 b 396 36 152 180
Vậy các cặp (a;b) thỏa mãn (36;396);(396;36);(180;252);(252;180)
Gọi 2 số tự nhiên cần tìm là a và b
Vì \(ƯCLN\left(a,b\right)=36\Rightarrow\hept{\begin{cases}a=36.m\\b=36.n\end{cases};\left(m,n\right)=1;m,n\in N}\)
Thay a = 36.m, b = 36.n vào a + b = 432, ta có:
36.m + 36.n = 432
=> 36.(m + n) = 432
=> m + n = 432 : 36
=> m + n = 12
Vì m và n nguyên tố cùng nhau
=> Ta có bảng giá trị:
m | 1 | 11 | 5 | 7 |
n | 11 | 1 | 7 | 5 |
a | 36 | 396 | 180 | 252 |
b | 396 | 36 | 252 | 180 |
Vậy các cặp (a,b) cần tìm là:
(36; 396); (396; 36); (180; 252); (252; 180).
Gọi 2 số tự nhiên cần tìm là a và b, ta có:
a = 36 ; a = 180
b= 396 ; b = 252
ta gọi 2 số đó là a;b
ta có:(a;b)=36 suy ra a=36.n;b=36.m. Vì a+b=432 nên 36.n+36.m=432=36.(m+n)=432 suy ra m+n=12
nếu m=1 suy ra n=11 vậy a=36;b=396
..........
...............
tìm 6 cặp số m;n và suy ra a;b
gọi 2 số tự nhiên cần tìm là x và y .Vì 36 là ƯCLN của x và y nên x=36m,y=36n
theo đề ta có : x+y=432 hay 36m+36n=432 suy ra 36(m+n)=432 suy ra : m+n=12
ta có bảng sau
m 1 2 3 4 5
n 11 10 9 8 7
với m=1 ; n=11 ta được (x,y)=(36;396) chọn
với m=2 ; n=10 ta được ( x,y)= ( 72;360) loại
.....................
.................................
..................................
.............................................
với m=5;n=7 ta được (x;y)=(180;252) chọn
Vây 2 số cần tìm là : ( 36;396 ) hoặc ( 180 ; 252 )
Gọi 2 số cần tìm là a và b
Vì ƯCLN của a và b là 36 suy ra a=36k,b=36h(k,hthuộc N* và à 2 số nguyên tố cùng nhau)(1)
a+b=432
36k+36h=432
36(k+h)=432
k+h=12(2)
*từ 1 và 2 suy ra nếu k=1 thì h=11 suy ra a=36, b=376
Nếu k=11 thì h=1 suy ra a= 376 và b= 36
Nếu k=5 thì h=7 suy ra a= 180 và b=252
nếu k=7 thì h=5 suy ra a= 252 và b=180