K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

S = 1-1/2 + 1/3-1/4 + 1/5-1/6 + ..... 1/499-1/500 = (1 + 1/3 + 1/5 + ..+ 1/499) - (1/2 + 1/4 + 1/6 + ...+ 1/500) - (1/2 + 1/4 + 1/6 + ...+ 1/500) + (1/2 + 1/4 + 1/6 + ...+ 1/500) S = (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500) - 2.(1/2 + 1/4 + 1/6 + ...+ 1/500) = (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500)- (1 + 1/2 + 1/3 + ...+1/250) = 1/251 + 1/252 + ...+ 1/500.

Vậy S = 1/251 + 1/252 + ...+ 1/500

24 tháng 10 2018

S = 1-1/2 + 1/3-1/4 + 1/5-1/6 + ..... 1/499-1/500

= (1 + 1/3 + 1/5 + ..+ 1/499) - (1/2 + 1/4 + 1/6 + ...+ 1/500) - (1/2 + 1/4 + 1/6 + ...+ 1/500) + (1/2 + 1/4 + 1/6 + ...+ 1/500)

S = (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500) - 2.(1/2 + 1/4 + 1/6 + ...+ 1/500)

= (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500)- (1 + 1/2 + 1/3 + ...+1/250)

= 1/251 + 1/252 + ...+ 1/500.

Vậy S = 1/251 + 1/252 + ...+ 1/500

24 tháng 4 2020

T = 500^2 - 499^2 + 498^2 - 497^2 +...+2^2 -1^2

= 2( 500^2 + 498^2 + 496^2 +...+2^2 ) - ( 1^2 + 2^2 +3^2 + 4^2 +...+498^2 + 499^2) 

= 2.4 ( 1^2 + 2^2 + 3^2 + ...+249^2 + 250^2) - ( 1^2 + 2^2 +3^2 + 4^2 +...+498^2 + 499^2) 

\(=8.\frac{250\left(250+1\right)\left(2.250+1\right)}{6}-\frac{500\left(500+1\right)\left(2.500+1\right)}{6}\)

\(=\frac{500\left(500+1\right)}{6}\left(4.\left(250+1\right)-\left(2.500+1\right)\right)\)

= 250 ( 500 + 1)= 125250

3 tháng 9 2021

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{499}{500}\)

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{499}{500}\)

\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{499}{500}\)

\(\Leftrightarrow x=499\)

3 tháng 9 2021

giúp e vs

 

 

24 tháng 11 2019

ta có:

1-1/2+1/2-1/3+1/3-1/4+....+1/x -1/x+1 =499/500

1-1/x+1 =499/500

1/x+1 =1/500 

x+1=500

x=499

24 tháng 11 2019

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{X\times\left(X+1\right)}=\frac{499}{500}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{X}-\frac{1}{X+1}=\frac{499}{500}\)

\(\Leftrightarrow1-\frac{1}{X+1}=\frac{499}{500}\)

\(\Leftrightarrow\frac{1}{X+1}=\frac{1}{500}\)

\(\Leftrightarrow X+1=500\)

\(\Leftrightarrow X=499\)

1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... - 499 - 500 + 501 + 502

= ( -4 ) + ( -4 ) + ... + ( -4 ) + 501 + 502

= -500 + 501 + 502

= 503

22 tháng 6 2015

Trên violympic đúng không bạn ?