Giải phương trình:
1) \(x^4-4x+3=0\)
2) \(x^4=2x^2-12x+8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(a,9\left(2x+1\right)=4\left(x-5\right)^2\)
\(4x^2-40x+100=18x+9\)
\(4x^2-58x+91=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{29+3\sqrt{53}}{4}\\x=\frac{29-3\sqrt{53}}{4}\end{cases}}\)
\(b,x^3-4x^2-12x+27=0\)
\(\left(x+3\right)\left(x^2-7x+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x^2-7x+9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{7\pm\sqrt{13}}{2}\end{cases}}}\)
\(c,x^3+3x^2-6x-8=0\)
\(\left(x+4\right)\left(x-2\right)\left(x+1\right)=0\)
\(Th1:x+4=0\Leftrightarrow x=-4\)
\(Th2:x-2=0\Leftrightarrow x=2\)
\(Th3:x+1=0\Leftrightarrow x=-1\)
\(a,9.\left(2x+1\right)=4.\left(x-5\right)^2\)
\(< =>4x^2-40x+100=18x+9\)
\(< =>4x^2+58x+91=0\)
\(< =>\orbr{\begin{cases}x=\frac{29-3\sqrt{53}}{4}\\x=\frac{29+3\sqrt{53}}{4}\end{cases}}\)
\(b,x^3-4x^2-12x+27=0\)
\(< =>\left(x+3\right)\left(x^2-7x+9\right)=0\)
\(< =>\orbr{\begin{cases}x+3=0\\x^2-7x+9=0\end{cases}}\)
\(< =>\orbr{\begin{cases}x=-3\\x=\frac{7\pm\sqrt{13}}{2}\end{cases}}\)
ĐKXĐ: \(x\ge1\).
Phương trình đã cho tương đương:
\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)
\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)
\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)
\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).
Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).
Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).
Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).
Vậy...
Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
\(ĐK:\orbr{\begin{cases}x\le1-\sqrt{2}\\1+\sqrt{2}\le x\le3\end{cases}}\)
\(\sqrt{2x^2-4x-2}+\left(x-1\right)^2\sqrt{12x-4}=\left(8-x\right)\sqrt{3-x}\)\(\Leftrightarrow\sqrt{2x^2-4x-2}-\sqrt{3-x}+\left(2x^2-3x-5\right)\sqrt{3-x}=0\)\(\Leftrightarrow\frac{2x^2-3x-5}{\sqrt{2x^2-4x-2}+\sqrt{3-x}}+\left(2x^2-3x-5\right)\sqrt{3-x}=0\)\(\Leftrightarrow\left(2x^2-3x-5\right)\left(\frac{1}{\sqrt{2x^2-4x-2}+\sqrt{3-x}}+\sqrt{3-x}\right)=0\)(*)
Mà ta có thể thấy được: \(\frac{1}{\sqrt{2x^2-4x-2}+\sqrt{3-x}}+\sqrt{3-x}>0\)nên từ phương trình (*) suy ra \(2x^2-3x-5=0\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)(t/m điều kiện)
Vậy phương trình có tập nghiệm \(S=\left\{-1;\frac{5}{2}\right\}\)
\(x^3-2\sqrt{2}x^2+6x-4\sqrt{2}=0\)
\(\Leftrightarrow\left(x^3-\sqrt{2}x^2+4x\right)-\left(\sqrt{2}x^2+2x-4\sqrt{2}\right)=0\)
\(\Leftrightarrow x\left(x-\sqrt{2}x+4\right)-\sqrt{2}\left(x-\sqrt{2}x+4\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x^2-\sqrt{2}x+4\right)=0\)
\(\Leftrightarrow x=\sqrt{2}\)
1/
-x^3 -5x^2 + 4x +4
=> x1 =-5.5877............
x2=1.1895.............
x3=-0.6018............