giải phương trình:
\(\frac{80}{x+4}+\frac{80}{x-4}=\frac{25}{3}\)
giải chi tiết giùm mminhf
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+5}{95}+\frac{x+3}{97}+\frac{x+1}{99}=\frac{x+15}{85}+\frac{x+20}{80}+\frac{x+25}{75}.\)
\(\frac{x+5}{95}+1+\frac{x+3}{97}+1+\frac{x+1}{99}+1-\frac{x+15}{85}-1-\frac{x+20}{80}-1-\frac{x+25}{75}-1=0\)
\(\frac{x+100}{95}+\frac{x+100}{97}+\frac{x+100}{99}-\frac{x+100}{85}-\frac{x+100}{80}-\frac{x+100}{75}=0\)
\(\left(x+100\right).\left(\frac{1}{95}+\frac{1}{97}+\frac{1}{99}-\frac{1}{85}-\frac{1}{80}-\frac{1}{75}\right)=0\)
\(\Rightarrow x+100=0\Rightarrow x=-100\)
\(\frac{1}{95}+\frac{1}{97}+\frac{1}{99}-\frac{1}{85}-\frac{1}{80}-\frac{1}{75}\ne0\)
Đkxđ: \(\hept{\begin{cases}x\ge-\frac{1}{4}\\y\ge2\end{cases}}\)
\(\Leftrightarrow2+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=y\Leftrightarrow2+\frac{1}{2}+\sqrt{x+\frac{1}{2}}=y\Leftrightarrow\sqrt{x+\frac{1}{2}}+\frac{5}{2}=y\)
do x,y nguyên dương nên \(\sqrt{x+\frac{1}{2}}+\frac{5}{2}\)nguyên dương\(\Leftrightarrow\sqrt{x+\frac{1}{2}}=\frac{k}{2}\)(K là số nguyên lẻ, \(k>1\))
\(\Rightarrow x=\frac{k^2-2}{4}\)
do \(k^2\)là số chính phương chia 4 dư 0,1 \(\Rightarrow x=\frac{k^2-2}{4}\notin Z\)
=> ko tồn tại cặp số nguyên dương x,y tmđkđb
\(\frac{42}{105}=\frac{2}{5}\)
=> \(\frac{x}{5}=\frac{4}{y}=\frac{z}{-80}=\frac{2}{5}\)
=> x=\(\frac{2}{5}\cdot5=2\)
y\(=4:\frac{2}{5}=4\cdot\frac{5}{2}=10\)
z=\(\frac{2}{5}\cdot\left(-80\right)=-32\)
tick nha
\(\Leftrightarrow\dfrac{16}{x+4}+\dfrac{16}{x-4}=\dfrac{5}{3}\)
=>\(\dfrac{16x-64+16x+64}{x^2-16}=\dfrac{5}{3}\)
=>5(x^2-16)=3*32x=96x
=>5x^2-96x-80=0
=>x=20 hoặc x=-4/5
nếu là giải PT bằng cách quy đồng:
25x2 + 480 - 400 = 0
làm sao để phan tích ra ạ.
Ta có : x/3=y/2 = x/12 = y /8
y/4=z/5 = y/8 = z/10 ( mình biến đổi sao cho y có mẫu chung là 8 ý bạn )
=> x/12=y/8=z/10 = -x-y+z/ -12-8+10
= -10/-10 =1
=> x = 1.12=12
y=1.8=8
z=1.10=10
a)x/5=32/80
=>80x=32*5
x=160/8
x=20
b)13/x=26/30
=>26x=13*30
x=390/26
x=15
c)-x/7=22/-77
=>(-x)*(-77)=22*7
x*77=154
x=154/77
x=2
\(\frac{80}{x+4}+\frac{80}{x-4}=\frac{25}{3}\left(1\right)\)
ĐKXĐ: \(x\ne\pm4\)
\(\left(1\right)\Leftrightarrow\frac{80\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{80\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\frac{25}{3}\)
\(\Leftrightarrow\frac{80x-320+80x+320}{\left(x-4\right)\left(x+4\right)}=\frac{25}{3}\)
\(\Leftrightarrow\frac{160x}{\left(x-4\right)\left(x+4\right)}=\frac{25}{3}\)
\(\Rightarrow480x=25\left(x-4\right)\left(x+4\right)\)
\(\Leftrightarrow480x=25\left(x^2-16\right)\)
\(\Leftrightarrow480x=25x^2-400\)
\(\Leftrightarrow25x^2-480x-400=0\)
\(\Leftrightarrow25x^2-480x+2304-2704=0\)
\(\Leftrightarrow\left(5x-48\right)^2=2704\)
\(\Leftrightarrow\left|5x-48\right|=52\)
+Trường hợp 1: Nếu \(x\ge\frac{48}{5}\)thì \(5x-48\ge0\Rightarrow\left|5x-48\right|=5x-48\)
Ta có phương trình;
\(5x-48=52\)
\(\Leftrightarrow5x=100\)
\(\Leftrightarrow x=20\)(thỏa măn)
+Trường hợp 2: Nếu\(x< \frac{48}{5}\)thì \(5x-48< 0\Rightarrow\left|5x-48\right|=48-5x\)
Ta có phương trình:
\(48-5x=52\)
\(\Leftrightarrow-5x=4\)
\(\Leftrightarrow x=-\frac{4}{5}\)(thỏa mãn)
\(S=\left\{20;-\frac{4}{5}\right\}\)
Ta có: \(\frac{80}{x+4}+\frac{80}{x-4}=\frac{25}{3}\)
\(\Leftrightarrow80.\left[\frac{x-4+x+4}{\left(x+4\right).\left(x-4\right)}\right]=\frac{25}{3}\)
\(\Leftrightarrow\frac{2x}{x^2-16}=\frac{25}{3}:80\)
\(\Leftrightarrow\frac{2x}{x^2-16}=\frac{5}{48}\)
\(\Rightarrow48.2x=5.\left(x^2-16\right)\)
\(\Leftrightarrow96x=5x^2-80\)
\(\Leftrightarrow5x^2-96x-80=0\)
\(\Leftrightarrow\left(5x^2-100x\right)+\left(4x-80\right)=0\)
\(\Leftrightarrow5x.\left(x-20\right)+4.\left(x-20\right)=0\)
\(\Leftrightarrow\left(5x+4\right).\left(x-20\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x+4=0\\x-20=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}5x=-4\\x=20\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{4}{5}\left(TM\right)\\x=20\left(TM\right)\end{cases}}\)
Vậy \(S=\left\{-\frac{4}{5};20\right\}\)
\(\frac{80}{x+4}+\frac{80}{x-4}=\frac{25}{3}\left(ĐkXĐ:x\ne\pm4\right)\\ \Leftrightarrow\frac{3.80\left(x-4\right)+3.80\left(x+4\right)-25.\left(x^2-16\right)}{\left(x^2-16\right).3}=0\\ \Leftrightarrow\frac{240x-960+240x+960-25x^2+400}{3.\left(x^2-16\right)}=0\\ \Leftrightarrow\frac{-25x^2+480x+400}{3.\left(x^2-16\right)}=0\\ \Leftrightarrow\frac{-25.\left(x+\frac{4}{5}\right)\left(x-20\right)}{3.\left(x^2-16\right)}=0\\ \Leftrightarrow\left[{}\begin{matrix}x+\frac{4}{5}=0\\x-20=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\frac{4}{5}\left(Nhận\right)\\x=20\left(Nhận\right)\end{matrix}\right.\\ \Rightarrow S=\left\{-\frac{4}{5};20\right\}\)