Tìm GTNN của biểu thức \(\frac{x}{\sqrt{x}-3}\)với x > 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1\)\(-\frac{2x+\sqrt{x}}{\sqrt{x}}\)
\(=\frac{\sqrt{x}\left(\sqrt{x^3}+1\right)}{x-\sqrt{x}+1}\)\(+\frac{\sqrt{x}-2x-\sqrt{x}}{\sqrt{x}}\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}\)
\(=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)
Bài Làm:
a, \(P=\frac{x+3}{\sqrt{x}-2}:\left(\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\right)\)
\(=\frac{x+3}{\sqrt{x}-2}:\left(\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)
\(=\frac{x+3}{\sqrt{x}-2}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-3}{\sqrt{x}-2}:\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-3}{\sqrt{x}-2}:\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+3}{\sqrt{x}-2}:\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{x+3}{\sqrt{x}-2}:\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(=\frac{x+3}{\sqrt{x}-2}.\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{x+3}{\sqrt{x}}\)
\(\frac{x}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-6\right)^2}{\sqrt{x}-3}+12\ge12\)
không biết có đúng không nhưng vẫn liều :))
M = \(\frac{x}{\sqrt{x}-3}\)
M -2 =\(\frac{x}{\sqrt{x}-3}-2\)
\(M-2=\frac{x-2\sqrt{x}+6}{\sqrt{x}-3}\)
\(M-2=\frac{x-2\sqrt{x}+4+2}{\sqrt{x}+3}\)
\(M-2=\frac{\left(\sqrt{x}-2\right)^2+2}{\sqrt{x}+3}\)
mà \(\left(\sqrt{x}-2\right)^2+2>=2\)
do x > 9 => \(\sqrt{x}-3>0\)
=> M-2 >= 2
M>= 4
=> Giá trị nhỏ nhất của M là 4