K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2023

\(8,1-\left(x-6\right)=4\left(2-2x\right)\)

\(\Leftrightarrow1-x+6=8-8x\)

\(\Leftrightarrow-x+8x=8-1-6\)

\(\Leftrightarrow7x=1\)

\(\Leftrightarrow x=\dfrac{1}{7}\)

\(9,\left(3x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)

\(10,\left(x+3\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)

 

11 tháng 1 2023

`8)1-(x-5)=4(2-2x)`

`<=>1-x+5=8-6x`

`<=>5x=2<=>x=2/5`

`9)(3x-2)(x+5)=0`

`<=>[(x=2/3),(x=-5):}`

`10)(x+3)(x^2+2)=0`

  Mà `x^2+2 > 0 AA x`

 `=>x+3=0`

`<=>x=-3`

`11)(5x-1)(x^2-9)=0`

`<=>(5x-1)(x-3)(x+3)=0`

`<=>[(x=1/5),(x=3),(x=-3):}`

`12)x(x-3)+3(x-3)=0`

`<=>(x-3)(x+3)=0`

`<=>[(x=3),(x=-3):}`

`13)x(x-5)-4x+20=0`

`<=>x(x-5)-4(x-5)=0`

`<=>(x-5)(x-4)=0`

`<=>[(x=5),(x=4):}`

`14)x^2+4x-5=0`

`<=>x^2+5x-x-5=0`

`<=>(x+5)(x-1)=0`

`<=>[(x=-5),(x=1):}`

20 tháng 10 2019

a) Ta có : (2x - 1)100 + (x - y)102 = 0

<=> \(\hept{\begin{cases}2x-1=0\\x-y=0\end{cases}}\)

<=> \(\hept{\begin{cases}2x=1\\x=y\end{cases}}\)

<=> \(x=y=\frac{1}{2}\)

b) Ta có: |x - 3| + (x + y)2020 = 0

<=> \(\hept{\begin{cases}x-3=0\\x+y=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=-x\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=-3\end{cases}}\)

Với x = 3 và y = -3 thay vào biểu thức A :

A = \(3^2.\left[3+\left(-3\right)\right]^{100}=9.0^{100}=0\)

20 tháng 10 2019

a) Ta có (2x - 1)100 \(\ge\)0 với mọi x

              (x - y)102  \(\ge\)0 với mọi x,y

Do đó : (2x - 1)100 + (x - y)102 \(\ge\)0 với mọi x,y

Và (2x-1)100 + (x-y)102 = 0

<=> 2x - 1 = 0          <=> x = 1/2

và   x - y   = 0             và y = 1/2

b) Ta có : |x - 3| \(\ge\)0 với mọi x

           (x + y)2020\(\ge\)0 với mọi x,y

Do đó : |x - 3| + (x + y)2020 \(\ge\)0 với mọi x,y

Và |x - 3| + (x + y)2020 = 0

<=> x - 3 = 0                      <=> x = 3

   và x + y = 0                     và    y = -3

Rồi tự thay vào r tính A đi eiu :)

22 tháng 8 2016

Tìm  x biết : \(\left|x-2\right|+\left|2x-3\right|=5\)

\(=>\hept{\begin{cases}x=7\\x=4\end{cases}}\)

tìm giá trị nhỏ nhất của biểu thức : 

\(A=\left|x-102\right|+\left|2-x\right|\)

nếu \(\hept{\begin{cases}x-102=0\\2-x=0\end{cases}}\)thì =>\(\hept{\begin{cases}x=102\\2\end{cases}}\)

nếu thấy đúng k nha

a: \(\Leftrightarrow\dfrac{x^4+2x^2+1-x^2}{x^2}=\dfrac{x^2+x+1}{x}\)

\(\Leftrightarrow\dfrac{\left(x^2+1+x\right)\left(x^2+1-x\right)}{x^2}=\dfrac{x^2+x+1}{x}\)

\(\Leftrightarrow\dfrac{x^2-x+1}{x^2}=\dfrac{1}{x}\)

=>x^2=x(x^2-x+1)

=>x(x-x^2+x-1)=0

=>x(-x^2+2x-1)=0

=>x=0(loại) hoặc x=1(nhận)

b: =>3(x+3)^2*(x+2)^2/(x^2-4)^2+68*(x-3)^2*(x-2)^2/(x^2-4)^2-46(x^2-9)(x^2-4)=6(x^2-4)^2

=>3(x^2+5x+6)^2+68(x^2-5x+6)^2-46(x^4-13x^2+36)=6(x^4-8x^2+16)

=>\(x\simeq28,4\)

15 tháng 5 2018

\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-9x^2+27x-27-\left(x^3-3^3\right)+9\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+9.\left(x^2+2x+1\right)=15\)

\(\Leftrightarrow-9x^2+27x+9x^2+18x+9=15\)

\(\Leftrightarrow45x=6\Leftrightarrow x=\frac{2}{15}\)

Vậy: \(S=\left\{\frac{2}{15}\right\}\)

15 tháng 5 2018

pt <=> \(\left(x-3\right)^3-\left(x^3-27\right)+9\left(x+1\right)^2=15\)

   <=> \(x^3-3x^2.3+3x.3^2-27-x^3+27+9x^2+18x+9=15\)

   <=>  \(45x=6\)

   <=>  \(x=\frac{6}{45}=\frac{2}{15}\)

5 tháng 8 2019

Làm đầy đủ hộ mình, mai nộp rùi

5 tháng 8 2019

a) \(5^{3x+1}=25^{x+2}\)

\(\Leftrightarrow5^{3x+1}=\left(5^2\right)^{x+2}\)

\(\Leftrightarrow5^{3x+1}=5^{2x+4}\)

\(\Leftrightarrow3x+1=2x+4\)

\(\Leftrightarrow3x-2x=4-1\)

\(\Leftrightarrow x=3\)

26 tháng 3 2022

Ta có:\(\left|x-1\right|\ge0;\forall x\)

        \(\left|x+2\right|\ge0;\forall x\)

          \(\left|x-3\right|\ge0;\forall x\)

           \(\left|x+4\right|\ge0;\forall x\) ......

Cộng tất cả ta được:

\(\left|x-1\right|+\left|x+2\right|+\left|x-3\right|+\left|x+4\right|+...+\left|x-9\right|\ge0\)

\(\Rightarrow Min_T=0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x=1\\x=-2\\x=3\\x=-4.....\end{matrix}\right.\)

26 tháng 3 2022

Tìm x nữa