cho n >2,2n-1 nguyen to
c/m 2n+1 la hop so
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét vì P>5 nên P thuộc dạng 5k+1 ; 5k+2 ; 5k+3 ;5k+4
nếu P=5k+1 =>2P+1=2(5k+1)+1=10k+3
=>4P+1=4(5k+1)+1=20k+5(TM)
nếu P=5k+2=>2P+1=2(5k+2)+1=10k+5(KTM với đề bài)
nếu P=5k+3 =>2P+1=2(5k+3)+1=10k+7
=>4P+1=4(5k+3)+1=20k+13(KTM với đề bài)
nếu P=5k+4 =>2P+1=2(5k+4)+1=10k+9
=>4P+1=4(5k+4)+1=20k(KTM với đề bài)
Vậy với P=5k+1 thì 4P+1 là hợp số
p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
Ta có : \(\left(2^n-1\right)\left(2^n+1\right)=2^{2n}-1=4^n-1\) luôn chia hết cho 3 \(\forall n\)
Mà \(2^n-1\) là số nguyên tố nên \(2^n+1\) chia hết cho 3 , hay \(2^n+1\) là hợp số (đpcm)
Vì n là số nguyên tố lớn hơn 3 nên n có dạng 3k+1 hoặc 3k+2 (k\(\varepsilon\) N*) và n2+2006 luôn lớn hơn 3
TH1: Với n = 3k+2, ta có : n2+2006 = (3k+1)2+2006 = 9k2+ 6k + 2007 = 3 ( 3K2 +2k + 669) luôn chia hết cho 3 với mọi k\(\in\) N* \(\Rightarrow\) n2+2006 là hợp số
TH2: Với n = 3k+2, ta có: n2+ 2006 = (3k+2)2+2006 = 9k2+ 12k + 2010 = 3 ( 3k2 + 4k + 670) luôn chia hết cho 3 với mọi k\(\varepsilon\) N*\(\Rightarrow\) n2+2006 là hợp số
Vậy n2+2006 là hợp số với n là số nguyên tố lớn hơn 3