Giải hệ phương trình :
x2=(y-1)x+y
y2=2xy-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ phương trình số 2 ta có
\(\left(x+y\right)\left(x+2y\right)+\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x+2y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)
lần lượt thay vào 1 ta có
\(\orbr{\begin{cases}y^2+7=y^2+4y\\\left(-2y-1\right)^2+7=y^2+4y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{4}\\3y^2+8=0\end{cases}}}\)
vậy hệ có nghiệm duy nhất \(x=-y=-\frac{7}{4}\)
Điều kiện: xy > 0
2 x 2 + y 2 + 2 x y = 16 x + y + 2 x y = 16 ⇔ 2 x 2 + y 2 = x + y ⇔ ( x – y ) 2 = 0 ⇔ x = y
Thay x = y vào x + y + x y = 16 ta được
2x + 2|x| = 16 ⇔ x + |x| = 8 ⇒ x = 4 ⇒ y = x = 4
Vậy hệ có một cặp nghiệm duy nhất (x; y) = (4; 4)
Khi đó x y = 4 4 = 1
Đáp án:D
a: Khi m=2 thì hệ sẽ là;
2x-y=4 và x-2y=3
=>x=5/3 và y=-2/3
b: mx-y=2m và x-my=m+1
=>x=my+m+1 và m(my+m+1)-y=2m
=>m^2y+m^2+m-y-2m=0
=>y(m^2-1)=-m^2+m
Để phương trình có nghiệm duy nhất thì m^2-1<>0
=>m<>1; m<>-1
=>y=(-m^2+m)/(m^2-1)=(-m)/m+1
x=my+m+1
\(=\dfrac{-m^2+m^2+2m+1}{m+1}=\dfrac{2m+1}{m+1}\)
x^2-y^2=5/2
=>\(\left(\dfrac{2m+1}{m+1}\right)^2-\left(-\dfrac{m}{m+1}\right)^2=\dfrac{5}{2}\)
=>\(\dfrac{4m^2+4m+1-m^2}{\left(m+1\right)^2}=\dfrac{5}{2}\)
=>2(3m^2+4m+1)=5(m^2+2m+1)
=>6m^2+8m+2-5m^2-10m-5=0
=>m^2-2m-3=0
=>(m-3)(m+1)=0
=>m=3
a: Thay m=-2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-2y=-2+1=-1\\-2x+y=3\cdot\left(-2\right)-1=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-4y=-2\\-2x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3y=-9\\x-2y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=3\\x=2y-1=2\cdot3-1=5\end{matrix}\right.\)
b: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(-m^2+1\right)=3m-1-m^2-m=-m^2+2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(m-1\right)\left(m+1\right)=\left(m-1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=m+1-m\cdot\dfrac{m-1}{m+1}=\left(m+1\right)-\dfrac{m^2-m}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\end{matrix}\right.\)
\(x^2-y^2=4\)
=>\(\dfrac{\left(3m+1\right)^2-\left(m-1\right)^2}{\left(m+1\right)^2}=4\)
=>\(\dfrac{9m^2+6m+1-m^2+2m+1}{\left(m+1\right)^2}=4\)
=>\(8m^2+8m+2=4\left(m+1\right)^2\)
=>\(8m^2+8m+2-4m^2-8m-4=0\)
=>\(4m^2-2=0\)
=>\(m^2=\dfrac{1}{2}\)
=>\(m=\pm\dfrac{1}{\sqrt{2}}\)
\(1,\\ a,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ b,=a^2\left(a-x\right)-y\left(a-x\right)=\left(a^2-y\right)\left(a-x\right)\\ c,=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\\ d,=x\left(x-2y\right)+t\left(x-2y\right)=\left(x+t\right)\left(x-2y\right)\\ 2,\\ \Rightarrow x^2-4x+4-x^2+9=6\\ \Rightarrow-4x=-7\Rightarrow x=\dfrac{7}{4}\\ 3,\\ a,x^2+2x+2=\left(x+1\right)^2+1\ge1>0\\ b,-x^2+4x-5=-\left(x-2\right)^2-1\le-1< 0\)
a, Thay m = 2 ta được \(\left\{{}\begin{matrix}2x+y=1\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
b, \(\Leftrightarrow\left\{{}\begin{matrix}3x=3m-3\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-1\\y=m-3\end{matrix}\right.\)
Ta có : \(x^2+y^2=m^2-2m+1+m^2-6m+9=2m^2-8m+10\)
\(=2\left(m^2-4m+4-4\right)+10=2\left(m-2\right)^2+2\ge2\forall m\)
Dấu''='' xảy ra khi m =2
Vậy ...
1.
\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)
\(=2x^3y^2-3x^2y^2+7x^2y\)
\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)
\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)
\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3\)
\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3\)
2.
\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3-y^3\)
\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3+y^3\)
\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)
\(=24xy+4x-6y-1-24xy-4x\)
\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)
\(=-6y-1\)
#Toru
a: \(\dfrac{x^2+2xy+y^2}{x+y}=x+y\)
b: \(\dfrac{64x^3+1}{4x+1}=16x^2-4x+1\)
x2=(y-1)x+y
y2=2xy-1