Cho K=\(\frac{2x^2}{x^4+x^2+1}\).Tìm giá trị lớn nhất của K.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(I=-\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2021\)
\(=-\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2021\)
\(=-\left[\left(x^2+5x\right)^2-6^2\right]+2021\)
\(=-\left(x^2+5x\right)^2+2057\le2057\)
\(I_{max}=2057\) khi \(x^2+5x=0\)
\(K=-\left(x-2\right)\left(x-7\right)\left(x-5\right)\left(x-4\right)+102\)
\(=-\left(x^2-9x+14\right)\left(x^2-9x+20\right)+102\)
\(=-\left(x^2-9x+14\right)\left(x^2+9x+14+6\right)+102\)
\(=-\left[\left(x^2-9x+14\right)^2+6\left(x^2-9x+14\right)\right]+102\)
\(=-\left[\left(x^2-9x+14\right)+6\left(x^2-9x+14\right)+9-9\right]+102\)
\(=-\left(x^2-9x+17\right)^2+111\le111\)
\(K_{max}=111\) khi \(x^2-9x+17=0\)
\(M=-\left(4x^2+4x+1\right)\left(16x^2+16x+3\right)-11\)
Đặt \(4x^2+4x+1=t\Rightarrow16x^2+16x=4t-4\)
\(\Rightarrow M=-t\left(4t-4+3\right)-11\)
\(M=-4t^2+t-11\)
\(M=-4\left(t-\dfrac{1}{8}\right)^2-\dfrac{175}{16}\le-\dfrac{175}{16}\)
\(M_{max}=-\dfrac{175}{16}\) khi \(t=\dfrac{1}{8}\)
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
Ta có :
\(K=\frac{2\sqrt{x}+3}{\sqrt{x}-5}=\frac{2\sqrt{x}-10}{\sqrt{x}-5}+\frac{13}{\sqrt{x}-5}=2+\frac{13}{\sqrt{x}-5}\)là số nguyên dương
<=> 13 chia hết cho \(\sqrt{x}-5\)
<=> \(\sqrt{x}-5\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)
<=> \(\sqrt{x}\in\left\{-12;4;6;18\right\}\)
<=> \(x\in\left\{16;36;324\right\}\) (vì \(\sqrt{x}\ge0\))
Do x nguyên và x có GTLN nên x = 324
zới \(x=0=>K=0\)
zới \(x\ne0,tacó\)\(\frac{1}{K}=\frac{x^4+x^2+1}{x^2}=x^2+1+\frac{1}{x^2}\ge3,nênK\le\frac{1}{3}\)
gái trị lớn nhất của \(K=\frac{1}{3}khi\left(x=\pm1\right)\)