K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 8 2020

Bằng 1 phép so sánh đơn giản \(\frac{1}{\sqrt{x+1}+1}>\frac{1}{\sqrt{x+100}+10}\) ; \(\forall x\ge-1\)

Ta suy ra luôn pt này vô nghiệm

5 tháng 10 2020

B1:

\(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}\)

\(=\left|\sqrt{2}-\sqrt{3}\right|+3\sqrt{2}\)

\(=\sqrt{3}-\sqrt{2}+3\sqrt{2}\)

\(=\sqrt{3}+2\sqrt{2}\)

\(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(=\sqrt{4-4\sqrt{3}+3}+\left|1+\sqrt{3}\right|\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}+1+\sqrt{3}\)

\(=2-\sqrt{3}+1+\sqrt{3}\)

\(=3\)

5 tháng 10 2020

B2:

đk: \(x\ge-2\)

Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\frac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\)

\(\Leftrightarrow\sqrt{x+2}=3\)

\(\Leftrightarrow x+2=9\)

\(\Rightarrow x=7\)

Vậy x = 7

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

k) ĐK: $x^2\geq 5$

PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$

$\Leftrightarrow 2\sqrt{x^2-5}=4$

$\Leftrightarrow \sqrt{x^2-5}=2$

$\Rightarrow x^2-5=4$

$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)

l) ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$

$\Leftrightarrow 4\sqrt{x+1}=4$

$\Leftrightarrow \sqrt{x+1}=1$

$\Rightarrow x+1=1$

$\Rightarrow x=0$

m) 

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$

$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$

$\Leftrightarrow 4\sqrt{x+1}=16$

$\Leftrightarrow \sqrt{x+1}=4$

$\Rightarrow x=15$ (thỏa mãn)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

h) 

ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{x+5}=6$

$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)

i) ĐKXĐ: $x\geq 5$

PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)

\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)

j) 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$

$\Leftrightarrow -2\sqrt{2x}+4=0$

$\Leftrightarrow \sqrt{2x}=2$

$\Rightarrow x=2$ (thỏa mãn)

 

a: \(\Leftrightarrow4x+\dfrac{3}{4}=2\cdot\dfrac{2}{5}+0.01\cdot10=\dfrac{9}{10}\)

=>4x=3/20

hay x=3/80

b: \(\Leftrightarrow\left|x\right|=4+\dfrac{1}{8}-9=-\dfrac{39}{8}\)(vô lý)

c: 2x(x-2/3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

d: \(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)

=>259-7x=3x+39

=>-10x=-220

hay x=22

3 tháng 8 2017

Ta có :

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

Ta có:

\(\frac{1}{\sqrt{x}+\sqrt{x-1}}=\frac{\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}=\sqrt{x}-\sqrt{x-1}\)

Do đó:

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

\(\Leftrightarrow A=\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+\sqrt{3}-\sqrt{4}+...+\sqrt{n-1}+\sqrt{n}\)

\(\Leftrightarrow A=\sqrt{n}-1\left(dpcm\right)\)

12 tháng 8 2019

Câu 1,2,3 Ez quá rồi :3

Câu 4:

Tổng quát:

\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v

12 tháng 8 2019

Câu 5 ko khác câu 4 lắm :v

Câu 5: 

Tổng quát:

\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v

6 tháng 7 2017

\(\left(\frac{x+3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(\frac{\sqrt{x}\cdot\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}:\frac{9-x+x-9-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3}{\sqrt{x}+3}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-2\right)^2}\)

\(=\frac{-3\cdot\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)^2}\)

\(=\frac{-3}{-\left(\sqrt{x}-2\right)}=\frac{3}{\sqrt{x}-2}\)

Chúc bạn học giỏi 

Kết bạn với mình nha