Bài 1: Thục hiện phép tính
3x+5/x2-5+25-x/25-5x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: \(35\cdot16+35\cdot28-44\cdot15\)
\(=35\left(16+28\right)-44\cdot15\)
\(=44\left(35-15\right)\)
\(=44\cdot20=880\)
b: \(240-2\left(3\cdot5^2-20:2^2\right)\)
\(=240-2\left(3\cdot25-20:4\right)\)
\(=240-150+10=10+90=100\)
2:
b: \(\left(8-3x\right)^4-1=15\)
=>\(\left(3x-8\right)^4=16\)
=>\(\left[{}\begin{matrix}3x-8=2\\3x-8=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=10\\3x=6\end{matrix}\right.\)
=>x=10/3 hoặc x=2
c: \(218-5\left(x-8\right)=2^5:2^2\)
=>\(218-5\left(x-8\right)=2^3=8\)
=>5(x-8)=210
=>x-8=42
=>x=50
d: \(\left(5-3x\right)^4-1=15\)
=>\(\left(3x-5\right)^4-1=15\)
=>\(\left(3x-5\right)^4=16\)
=>\(\left[{}\begin{matrix}3x-5=-4\\3x-5=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\3x=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\end{matrix}\right.\)
a. 5x + 3(x2 - x - 1)
= 5x + 3x2 - 3x - 3
= 3x2 + 5x - 3x - 3
= 3x2 + 2x - 3
b. (5 - x)(5 + x) - (2x - 1)2
25 - x2 - (4x2 - 4x + 1)
= 25 - x2 - 4x2 + 4x - 1
= 25 - 1 - x2 - 4x2 + 4x
= 24 - 5x2 + 4x
\(a,\left(x^3+5x^2-2x+1\right)\left(x-7\right)\\ =x^4-7x^3+5x^3-35x^2-2x^2+14x+x-7\\ =x^4-2x^3-37x^2+15x-7\\ b,\left(2x^2-3xy+y^2\right)\left(x+y\right)\\ =2x^3+2x^2y-3x^2y-3xy^2+xy^2+y^3\\ =2x^3-x^2y-2xy^2+y^3\\ c,\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\\ =x^3-5x^2+x-2x^2+10x--x^3-11x\\ =x^3-7x^2\\ d,x\left(1-3x\right)\left(4-3x\right)-\left(x-4\right)\left(3x+5\right)\\ =x\left(4-15x+9x^2\right)-\left(3x^2-7x-20\right)\\ =4x-15x^2+9x^3-3x^2+7x+20\\ =9x^3-18x^2+11x+20\)
a: \(=15x^5-25x^4+15x^3\)
b: \(=2x^3+10x^2-8x-x^2-5x+4\)
\(=2x^3+9x^2-13x+4\)
a) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{9x^2-4}\)
\(=\dfrac{3x+2-3x+2-3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{-3x+10}{\left(3x-2\right)\left(3x+2\right)}\)
b) \(\dfrac{x+25}{2x^2-50}-\dfrac{x+5}{x^2-5x}-\dfrac{5-x}{2x^2+10x}\)
\(=\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}-\dfrac{x+5}{x\left(x-5\right)}+\dfrac{x-5}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+25x-2\left(x+5\right)^2+\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{x^2+25x-2x^2-20x-50+x^2-10x+25}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-5x-25}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-5\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{-5}{2x\left(x-5\right)}\)
c) Ta có: \(\dfrac{1-2x}{2x}-\dfrac{4x}{2x-1}-\dfrac{3}{2x-4x^2}\)
\(=\dfrac{-\left(2x-1\right)^2-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-\left(4x^2-4x+1\right)-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-4x^2+4x-1-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-12x^2+4x+2}{2x\left(2x-1\right)}\)
Bài này đề bài phải là khai triển biểu thức, chứ không phải là tính em nhé.
Lời giải:
Ta áp dụng hằng đẳng thức đáng nhớ thôi.
a. $(3+2x)^3=3^3+3.3^2.2x+3.3.(2x)^2+(2x)^3$
$=8x^3+36x^2+54x+27$
b.
$(\frac{1}{2}-y)^3=(\frac{1}{2})^3-3.(\frac{1}{2})^2.y+3.\frac{1}{2}y^2-y^3$
$=-y^3+\frac{3}{2}y^2-\frac{3}{4}y+\frac{1}{8}$
c.
$(x-5)(x^2+5x+25)=(x-5)^2(x^2+5x+5^2)$
$=x^3-5^3=x^3-125$
d.
$(3x+\frac{1}{2})(9x^2-\frac{3}{2}x+\frac{1}{4})$
$=(3x+\frac{1}{2})[(3x)^2-3x.\frac{1}{2}+(\frac{1}{2})^2]$
$=(3x)^3+(\frac{1}{2})^3=27x^3+\frac{1}{8}$
Bài 1:
a: \(=6x^3-10x^2+6x\)
b: \(=-2x^3-10x^2-6x\)
Bài 4:
a: =>3x+10-2x=0
=>x=-10
c: =>3x2-3x2+6x=36
=>6x=36
hay x=6
Bài 1:
\(a,=6x^3-10x^2+6x\\ b,=-2x^3-10x^2-6x\)
Bài 4:
\(a,\Leftrightarrow3x+10-2x=0\Leftrightarrow x=-10\\ b,\Leftrightarrow x\left(2x^2+9x-5\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\\ \Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\\ \Leftrightarrow-6x=8\Leftrightarrow x=-\dfrac{4}{3}\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\)
Bài 1:
\(a,=7xy\left(2x-3y+4xy\right)\\ b,=x\left(x+y\right)-5\left(x+y\right)=\left(x-5\right)\left(x+y\right)\\ c,=\left(x-y\right)\left(10x+8\right)=2\left(5x+4\right)\left(x-y\right)\\ d,=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\\ =2x\left(4x+2\right)=4x\left(2x+1\right)\\ e,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x^2+8x-x-8=\left(x+8\right)\left(x-1\right)\\ g,\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\\ h,=x^2+3x+x+3=\left(x+3\right)\left(x+1\right)\)
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
bạn ơi bạn viết thành phân số cho mk đi, mk ko hiểu
Hình như đề sai đúng ko bn??![lolang lolang](https://hoc24.vn/media/cke24/plugins/smiley/images/lolang.png)