Hãy chứng minh(3^20)^6 có hai cs tận cùng là 00. Giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.3.3.3...3 có 2018 thừa số 3
Ta có : \(A=3.3.3...3=3^{2018}\)
\(3^{2018}=3^{2016}\cdot3^2\)
\(3^{2016}\cdot3^2=\left(3^4\right)^{504}\cdot3^2\)
\(\left(3^4\right)^{504}\)Có dạng lũy thừa 4n nên có tận cùng 1
\(3^2\)có tận cùng là 9
\(\Rightarrow\left(3^4\right)^{504}\cdot3^2=3^{2018}\)có tận cùng là 9
S=7+7^2+..+7^2017
7S=7^2+..+7^2018
(7s-s)=6s
=7^2018-7
\(S=\frac{7^{2018}-7}{6}\)
Tìm số tận cùng của 72018
\(7^{2018}=7^{2.1009}=49^{1009}=49.49^{1008}=49.\left(...1\right)^{504}\Rightarrow tancung=9\)=> 72018-7 có tận cùng =2
=> S có tận cùng là :(12/6= 2) hoạc (42/6=7)
S có 2017 số hạng => S là một số lẻ
=> S có tạn cùng =7
Chứng minh rằng n và n2017 có chữ số tận cùng giống nhau .
( Giúp mình nhiệt tình nhé mọi người -_- )
Ta thấy 2017 = 4.504 + 1
Ta có nhận xét :
Số tự nhiên nào khi nâng lên lũy thừa mũ 4n + 1 có chữ số tận cùng là chình nó
Vậy n2017 = n4n + 1 = (....n)
Vậy n và n2017 có chữ số tận cùng giống nhau
Xét n^2017-n=\(n\left(n^{2016}-1\right)=n\left(\left(n^4\right)^{504}-1\right)=n\left(n^4-1\right).k\) chia hết cho \(n\left(n^4-1\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Biểu thức trên chia hết cho 10 ( tự CM)