K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2020

*) Ta có (x+2)2 \(\ge0\forall x\)

\(\Rightarrow5-\left(x+2\right)^2\ge5\)hay \(D\ge5\)

Dấu "=" <=> (x+2)2=0

<=> x=-2

Vậy MaxD=5 đạt được khi x=-2

*) Ta có \(\left(2-y\right)^4\ge0\forall y\)

\(\Rightarrow6-3\left(2-y\right)^4\ge6\forall y\)

hay \(E\ge6\)

Dấu "=" <=> \(\left(2-y\right)^2=0\)

<=> y=2

Vậy MaxE=6 đạt đươc kho y=2

30 tháng 3 2020

*) Ta có \(\left(x+2\right)^2\ge0\forall x\in Z\)

=> \(5-\left(x+2\right)^2\ge5-0=5\)hay D \(\ge5\)

Dấu "=" xảy ra <=> (x+2)2=0

<=> x+2=0

<=> x=-2

Vậy \(Max_D=5\)đạt được khi x=-2

*) Ta có: \(\left(2-y\right)^4\ge0\forall y\inℤ\)

=> \(3\left(2-y\right)^4\ge0\forall y\inℤ\)

=> 6-3(2-y)4 \(\ge\)6-0=6 

hay E \(\ge6\). Dấu "=" xảy ra <=> 3(2-y)4=0

<=> (2-y)4=0

<=> 2-y=0

<=> y=2

vậy MaxE=6 đạt được khi y=2

NV
1 tháng 8 2021

\(D=\left(x^2+z^2-2xz\right)+\left(x^2+y^2-2xy+2x-2y+1\right)+3\)

\(D=\left(x-z\right)^2+\left(x-y+1\right)^2+3\ge3\)

\(D_{min}=3\) khi \(\left\{{}\begin{matrix}x=z\\x=y-1\end{matrix}\right.\)

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

10 tháng 8 2018

b. + Vì \(|6-2x|\ge0\)\(\forall x\)

\(\Rightarrow\)\(|6-2x|-5\ge0-5\)\(\forall x\)

\(\Rightarrow\)B\(\ge\)-5 \(\forall x\)

Vậy GTNN của B= -5 \(\Leftrightarrow\)6-2x=0

                                    \(\Leftrightarrow\)2x=6

                                   \(\Leftrightarrow\)x=3

+ Vì -\(|6-2x|\le0\forall x\)

\(\Rightarrow\)\(|6-2x|-5\le0+5\forall x\)

\(\Rightarrow B\le5\forall x\)

Vậy GTLN của B= 5 \(\Leftrightarrow6-2x=0\)

                                \(\Leftrightarrow2x=1\)

                                \(\Leftrightarrow x=\frac{1}{2}\)

c,+ Vì \(|x+1|\ge0\forall x\)

\(\Rightarrow\)\(3-|x+1|\ge3-0\forall x\)

\(\Rightarrow C\ge3\forall x\)

Vậy GTNN của C=3 \(\Leftrightarrow x+1=0\)

                                 \(\Leftrightarrow x=-1\)

+ Vì \(-|x+1|\le0\forall x\)

\(\Rightarrow3-|x+1|\le3+0\forall x\)

\(\Rightarrow C\le3\forall x\)

Vậy GTLN của \(C=3\Leftrightarrow x+1=0\)

                                     \(\Leftrightarrow x=-1\)

Mình chỉ làm vậy thôi nhé!

10 tháng 8 2018

THANKS  BẠN NHIỀU NHA

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

21 tháng 12 2021

Answer:

a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)

\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)

\(\Rightarrow5x+2x+2-12=0\)

\(\Rightarrow7x-10=0\)

\(\Rightarrow x=\frac{10}{7}\)

b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)

\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)

\(\Rightarrow\frac{3}{2}x=-6\)

\(\Rightarrow x=-4\)

c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)

\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)

\(\Rightarrow9x-6-6x-6\ge0\)

\(\Rightarrow3x-12\ge0\)

\(\Rightarrow x\ge4\)

d) \(\left(x+1\right)^2< \left(x-1\right)^2\)

\(\Rightarrow x^2+2x+1< x^2-2x+1\)

\(\Rightarrow4x< 0\)

\(\Rightarrow x< 0\)

e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)

\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)

\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)

\(\Rightarrow6x\le24\)

\(\Rightarrow x\le4\)

f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)

\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)

\(\Rightarrow9x-6-6x-6\le0\)

\(\Rightarrow3x\le12\)

\(\Rightarrow x\le4\)