(x-1/2)=(2x+3/4)
() là trị tuyệt đối nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Vì (x-2)^2>=0 với mọi giá trị của x thuộc R
nên GTNN của (x-2)^2 là 0 khi x=2
b,Vì (2x-1)^2>=0 với mọi giá trị của x thuộc R
Nên (2x-1)^2+1>=1
GTNN của (2x-1)^2+1 là 1 khi 2x-1=0 hay x=1/2
c,GTNN của (2x+1)^4-3 là -3 khi x=-1/2
Bạn trình bày như các câu trên nha
d, (x^2-9)^4 >=0
/y-4/>=0
suy ra (x^2-9)^4+/y-4/-1>=1
GTNN của (x^2-9)^4+/y-4/-1 là -1 khi x^2-9=0 và y-4=0
Hay x=+-3 và y=4
c) x^2 -x-20=0
\(\Leftrightarrow x^2-5x+4x-20=0\)
\(\Leftrightarrow\left(x^2+4x\right)-\left(5x+20\right)=0\)
\(\Leftrightarrow x\left(x+4\right)-5\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=5\end{matrix}\right.\)
Vậy...
a) \(\left|2-x\right|+x=-3\\ \Rightarrow\left|2-x\right|=-3-x\left(ĐK:-3-x\ge0\right)\\ \Rightarrow\left[{}\begin{matrix}2-x=-3-x\\2-x=3+x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-x=-3-2\\-x-x=3-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}0=-5\left(\text{vô lí}\right)\\-2x=1\end{matrix}\right.\Rightarrow x=\frac{-1}{2}\left(ktm\text{ }-3-x\ge0\right)\)
Vậy \(x\in\varnothing\)
b) \(\left|x-1\right|+1=2x-3\\ \Rightarrow\left|x-1\right|=2x-4\left(ĐK:2x-4\ge0\right)\\ \Rightarrow\left[{}\begin{matrix}x-1=2x-4\\x-1=-2x+4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-x=4-1\\x+2x=1+4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\left(t/m\right)\\3x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\left(t/m\right)\\x=\frac{5}{3}\left(ktm\right)\end{matrix}\right.\)
Vậy x = 3
c) \(\left|\frac{4}{3}x-\frac{4}{3}+\frac{1}{2}\right|=\left|2x-2+\frac{1}{3}\right|\\ \Rightarrow\left[{}\begin{matrix}\frac{4}{3}x-\frac{4}{3}+\frac{1}{2}=2x-2+\frac{1}{3}\\\frac{4}{3}x-\frac{4}{3}+\frac{1}{2}=-2x+2-\frac{1}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-\frac{4}{3}x=2-\frac{1}{3}-\frac{4}{3}+\frac{1}{2}\\\frac{4}{3}x+2x=\frac{4}{3}-\frac{1}{2}+2-\frac{1}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x=\frac{5}{6}\\\frac{10}{3}x=\frac{5}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{5}{4}\\x=\frac{3}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{5}{4};\frac{3}{4}\right\}\)
vì \(|x+1|+|2x+3|+|3x+4|>=0\)
suy ra 7x >=0
suy ra x>= 0
suy ra x+1 +2x+3+3x+4 = 7x
suy ra x=8
*\(x\ge\dfrac{1}{2}\Leftrightarrow\left|2x-1\right|=2x-1\)
\(D=\left(2x-1\right)^2-3\left(2x-1\right)+2=\left(2x-1\right)^2-2.\dfrac{3}{2}\left(2x-1\right)+\dfrac{9}{4}-\dfrac{1}{4}=\left(2x-1-\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(2x-\dfrac{5}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)\(D_{min}=-\dfrac{1}{4}\Leftrightarrow x=\dfrac{5}{4}\left(1\right)\)
*\(x< \dfrac{1}{2}\Leftrightarrow\left|2x-1\right|=-2x+1\)
\(D=\left(2x-1\right)^2+3\left(2x-1\right)+2=\left(2x-1\right)^2+2.\dfrac{3}{2}\left(2x-1\right)+\dfrac{9}{4}-\dfrac{1}{4}=\left(2x-1+\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(2x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)\(D_{min}=-\dfrac{1}{4}\Leftrightarrow x=\dfrac{-1}{4}\left(2\right)\)
-Từ (1) và (2) suy ra \(D_{min}=-\dfrac{1}{4}\Leftrightarrow x\in\left\{\dfrac{5}{4};\dfrac{-1}{4}\right\}\)
\(\Leftrightarrow\left|2x+4\right|-\left|1-x\right|=-3\)
tao chiu
sao ko dùng | mà lại dùng ( làm gì