Tìm X :
2x +2x+2=320
các bạn giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2 x - 3) - (x + 2) = ( x - 2)-3(x - 5)
\(\Leftrightarrow\)2x - 3 - x - 2 = x - 2 - 3x + 15
\(\Leftrightarrow\)x - 5 = 13 - 2x
\(\Leftrightarrow\)3x = 18
\(\Leftrightarrow\)x = 6
Vậy x = 6 là giá trị cần tìm
a/ \(2x^3=8x\)
\(2.8=2x^3\)
\(16=2x^3\)
\(x^3=16:2\)
\(x^3=8\)
\(x=2\)
phần b mk chưa nghiên cứu dc
\(\frac{2x-10}{6}=\frac{-27}{5-x}\)
\(\frac{2\left(x-5\right)}{6}=\frac{27}{x-5}\)
\(2\left(x-5\right)^2=27\times6\)
\(2x^2-20x+50-162=0\)
\(2x^2-20x-112=0\)
\(x^2-10x-56=0\)
\(x^2-14x+4x-56=0\)
\(\left(x-14\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-14=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=14\\x=-4\end{cases}}\)
KL .....
XIN TIICK
a) x/3 = y/2 = z/5 = 2y/4 = 2y- z/4-5 = -3/-1 = 3
x/3 = 3 suy ra x=9 ; y/2 = 3 suy ra y=6 ; z/5 = 3 suy ra z=15
Vậy x=3 ; y=6 ; z=15
b) x/2 = y/2 suy ra x/6 = y/15 (nhân vs 3) ; y/3 = z/7 suy ra y/15 = z/35 (nhân vs 5) . Suy ra x/6 = y/15 = z/35
x/6 = y/15 = z/35 = 2x/12 = 3y/45 = 2x+ 3y- z/ 12+ 45- 35 = 22/22 =1
x/6 = 1 suy ra x=6 ; y/15 = 1 suy ra y=15 ; z/35 = 1 suy ra =35
Vậy x=6 ; y=15 ; z= 35
a) \(\left(x-3\right).\left(x^2+3x+9\right)-x.\left(x+4\right)\left(x-4\right)=21\)
\(\Leftrightarrow x^3-27-x.\left(x^2-16\right)=21\) \(\Leftrightarrow x^3-27-x^3+16x=21\)
\(\Leftrightarrow16x=21+27\) \(\Leftrightarrow16x=48\) \(\Leftrightarrow x=3\)
b) \(\left(x+2\right)\left(x^2-2x+4\right)-x.\left(x^2+2\right)=4\)
\(\Leftrightarrow x^3+8-x^3-2x=4\) \(\Leftrightarrow-2x=4-8\) \(\Leftrightarrow-2x=-4\) \(\Leftrightarrow x=2\)
x2-4x+4=4x2-12x+9
\(\Leftrightarrow\)3x2-8x+5=0
\(\Leftrightarrow\)3x2-3x-5x+5=0
\(\Leftrightarrow\)3x(x-1)-5(x-1)=0
\(\Leftrightarrow\)(x-1)(3x-5)=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=1\end{cases}}\)
b,x2-2x-25=0
\(\Leftrightarrow\)(x-1)2-26=0
\(\Leftrightarrow\)(x-1-\(\sqrt{26}\))(x-1+\(\sqrt{26}\))=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{26}+1\\x=-\sqrt{26}+1\end{cases}}\)
2, a, x^2-2x+1+4=(x-1)^2+4\(\ge\)4
b, 4x^2-4x+1-1+y^2+2y+1-1-2015=(2x-1)^2+(y+1)^2-2017\(\ge\)-2017
mk làm như thế thôi chứ bài kia dài quá mk làm biếng sory
Nguyễn Thị Hà Tiên : Cảm ơn bạn nhiều lắm =)) Mik đã bt hướng làm bài rồi :3 Thực sự cảm ơn pạn nek <3
Bài 1:
a) \(\left(x-2\right)^2=4x^2-12x+9\Leftrightarrow\left(x-2\right)^2=\left(2x-9\right)^2\Leftrightarrow\left(x-2\right)^2-\left(2x-9\right)^2=0\)
\(\Leftrightarrow\left(x-2+2x-9\right)\left(x-2-2x+9\right)=0\Leftrightarrow\left(3x-11\right)\left(7-x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-11=0\Leftrightarrow3x=11\Leftrightarrow x=\frac{11}{3}\\7-x=0\Leftrightarrow-x=-7\Leftrightarrow x=7\end{cases}}\)
VẬy tập nghiệm của phương trình là : S={11/3 ; 7}
b) Nếu x^2 -2x =25 thì lẻ lắm . Tớ nghĩ phải là : x^2 -2x = 24
Bài 2 :
a) \(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
vì \(\left(x-1\right)^2\ge0\) nên \(\left(x-1\right)^2+4\ge4\) hay \(A\ge4\)
Vậy GTNN của A là 4 khi x = 1 ( hay x-1 =0 )
b) \(B=4x^2-4x+y^2+2y-2015=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)-2017\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2-2017\)
Vì \(\left(2x-1\right)^2\ge0\) và \(\left(y+1\right)^2\ge0\) nên \(\left(2x-1\right)^2+\left(y+1\right)^2-2017\ge-2017\)
HAy \(B\ge-2017\) Vậy GTNN của B là -2017 khi x=1/2 và y = -1
2x+ 2x+2=320
2x+ 2x.22= 320
2x+2x .4= 320
2x.1+2x.4= 320
2x (1+4) = 320
2x .5= 320
2x = 320:5
2x=64
=> 2x= 26
=> x=6
Vậy....
\(2^x+2^{x+2}=320\)
\(2^x+2^x.2^2=320\)
\(2^x\left(1+2^2\right)=320\)
\(2^x.5=320\)
\(2^x=64\)
\(2^x=2^6\)
\(\Rightarrow x=6\)
Vậy \(x=6.\)