K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:
Ta có: $3^x.y^2=4z^2+8z+1=(2z+2)^2-3$

$\Rightarrow (2z+2)^2=3+3^x.y^2$

Xét các TH sau:

TH1: $x=0\Rightarrow (2z+2)^2=3+y^2$

$\Leftrightarrow (2z+2)^2-y^2=3$

$\Leftrightarrow (2z+2-y)(2z+2+y)=3$ (đây là dạng phương trình tích đơn giản với các thừa số nguyên)

TH2: $x=1\Rightarrow (2z+2)^2=3+3y^2\vdots 3\Rightarrow 2z+2\vdots 3$

$\Rightarrow 3+3y^2=(2z+2)^2\vdots 9\Rightarrow y^2+1\vdots 3$

Điều này hoàn toàn vô lý do ta có tính chất 1 số chính phương khi chia cho $3$ có dư là $0$ hoặc $1$. Do đó $y^2+1$ chia 3 có dư là $1$ hoặc $2$.

TH3: $x\geq 2\Rightarrow (2z+2)^2=3+3^x.y^2\vdots 3\Rightarrow 2z+2\vdots 3$

$\Rightarrow 3+3^x.y^2=(2z+2)^2\vdots 9$

Điều này vô lý do $3\not\vdots 9$ và $3^x.y^2\vdots 9$ với mọi $x\geq 2$

Vậy.........

28 tháng 3 2020

x=2 y=1

mình chỉ tìm được vậy thôi chúc học tốt

28 tháng 3 2020

x3-x2+x-1=3y

x+x-1=3y

2x-1=3y

12 tháng 10 2021

Áp dụng t/c dtsbn:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{3x}{6}=\dfrac{4z}{16}=\dfrac{3x+y+4z}{6+3+16}=\dfrac{18}{25}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{18.2}{25}=\dfrac{36}{25}\\y=\dfrac{18.3}{25}=\dfrac{54}{25}\\z=\dfrac{18.4}{25}=\dfrac{72}{25}\end{matrix}\right.\)

12 tháng 10 2021

Bạn có ghi sai đề không ạ

28 tháng 12 2018

bn ơi câu a có sai đề k

29 tháng 12 2018

a) Sai đề

b) \(25-y^2=8\left(x-2016\right)^2\)

\(\Leftrightarrow5^2-y^2=8\left(x-2016\right)^2\)

\(\Leftrightarrow\left(5^2-y^2\right)-8\left(x-2016\right)^2=0\)

Mà \(8\left(x-2016\right)^2\ge0\Rightarrow5^2-y^2\ge8\left(x-2016\right)^2\ge0\)

\(\Rightarrow\left(5^2-y^2\right)-8\left(x-2016\right)^2\ge0\)

Do theo đề bài thì vế phải bằng 0 nên: \(\hept{\begin{cases}5^2-y^2=0\\8\left(x-2016\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=5\\x=2016\end{cases}}\)

28 tháng 12 2019

\(Ta \) \(có : \)  \(x. ( y +2 ) - y = 3\)

\(\Rightarrow\)\(x. ( y + 2 ) - y = 1 + 2\)

\(\Rightarrow\)\(x. ( y + 2 ) - y - 2 = 1 \)

\(\Rightarrow\)\(x. (y + 2 ) - ( y + 2 )=1\)

\(\Rightarrow\)\((y+ 2 )(x - 1 ) = 1\)

\(Ta\)  \(Lập \)  \(Bảng :\)

\(x - 1\)\(1\)
\(y + 2\)\(1\)
\(x\)\(2 \)
\(y\)\(- 1\)\(( loại )\)

  

\(Vậy : Không \)  \(có \)  \(giá\) \(trị\)  \(của\) \(x,y\)

28 tháng 12 2019

Thế thì x=2 còn y=1 được ko

\(a,12⋮x-1\)

\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Tự lập bảng nha 

\(b,28⋮2x+1\)

\(2x+1\inƯ\left(28\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)

Ta có bảng 

2x+11-12-27-714-14
2x0-21-36-813-15
x0-11/2-3/23-413/2-15/2

\(c,x+15⋮x+3\)

\(x+3+12⋮x+3\)

\(12⋮x+3\)

\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Tự lập bảng 

\(d,\left(x+1\right)\left(y-1\right)=3\)

\(\Rightarrow x+1;y-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Ta lập bảng

x+11-13-3
y-13-31-1
x0-22-4
y4-220
9 tháng 11 2015

a)

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=\frac{x+y+z}{2\left(x+y+z\right)+3}=x+y+z\)

=> 2(x+y+z) +3 =1=> x+y+z=-1

Luôn đùng Vói mọi x;y;z khác o  sao cho x+y+z = -1

b)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

x= 3/2 .12=18

y= 4/3 .12=16

z=5/4 .12=15