\(\sqrt[3]{729}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
+ 3√512=3√83=8;5123=833=8;
+ 3√−729=3√(−9)3=−9;−7293=(−9)33=−9;
+ 3√0,064=3√0,43=0,4;0,0643=0,433=0,4;
+ 3√−0,216=3√(−0,6)3=−0,6;−0,2163=(−0,6)33=−0,6;
+ 3√−0,008=3√(−0,2)3=−0,2.
Đáp án:
( lần lượt như trên nhé!!! Ko viết lại đề)
8 ; - 9 ; 0,4 ; - 0,6 ; - 0,2
Ta có: \(A=\left[6.\left(\frac{-1}{3}\right)^2-\left(-\frac{1}{3}\right)+1\right]:\left(\frac{-1}{3}-1\right)\)
\(\Rightarrow A=\left[6.\frac{1}{9}+\frac{1}{3}+1\right]:\left(\frac{-1}{3}-\frac{3}{3}\right)\)
\(\Rightarrow A=\left[\frac{2}{3}+\frac{1}{3}+1\right]:\frac{-4}{3}\)
\(\Rightarrow A=\left[1+1\right].\frac{-3}{4}=2.\frac{-3}{4}=\frac{-3}{2}\)
Mà \(B=\left(729-1^3\right)\left(729-2^3\right)\left(729-3^3\right)...\left(729-125^3\right)\)
\(=\left(729-1^3\right)\left(729-2^3\right)...\left(729-9^3\right)...\left(729-125^3\right)\)
\(=\left(729-1^3\right)\left(729-2^3\right)...0...\left(729-125^3\right)=0\)
Vì \(\frac{-3}{2}< 0\)nên A < B
Phân tích số dưới dấu căn ra thừa số nguyên tố hoặc đổi thành phân số.
3\(\sqrt{ }\)512 = 3\(\sqrt{ }\)29 = 3\(\sqrt{ }\)(23)3= 23 = 8
3\(\sqrt{ }\)-729 = – 3\(\sqrt{ }\)729 = – 3\(\sqrt{ }\)36=- 3\(\sqrt{ }\)(32)3 = – (32)= -9
3\(\sqrt{ }\)-216 = -3/5
3\(\sqrt{ }\)-0,008 = -1/5
câu 2 này ms làm tức thì nà
đầu tiên t c/m câu phụ \(\left(a-b\right)\left(b-c\right)\left(c-a\right)\le\dfrac{3\sqrt{3}}{2}\)
đặt P =VT ta có \(P\le\left|P\right|=\sqrt{P^2}\)
vậy ta c/m \(P^2\le\dfrac{27}{4}\)
<=> \(\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\le\dfrac{27}{4}\)
không mất tính tổng wat giả sử \(a\ge b\ge c\) (2)
dễ thấy \(\left(b-c\right)^2\le b^2;\left(c-a\right)^2\le a^2\)
=> c/m :\(a^2b^2\left(a-b\right)^2\le\dfrac{27}{4}\Leftrightarrow4a^2b^2\left(a-b\right)^2\le\dfrac{27}{4}\)
áp dụng AM-GM ta có
\(4a^2b^2\left(a-b\right)^2=\left(2ab\right)\left(2ab\right)\left(a^2-2ab+b^2\right)\le\left[\dfrac{2\left(2ab\right)+\left(a^2-2ab+b^2\right)}{3}\right]^3=\left(\dfrac{a^2+2ab+b^2}{3}\right)^3=\dfrac{\left(a+b\right)^6}{27}\)
mặt khác từ (2) ta có \(a+b\le a+b+c=3\)
=>dpcm
@quay trở lại bài toán áp dụng câu phụ mik vừa ns c2 <=> c/m
\(\left(a^3+b^3+c^3\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{243}{4}\)
nhân 3 cho 2 vế r áp dụng AM-GM
\(\left(a^3+b^3+c^3\right)3\left(a+b\right)\left(a+c\right)\left(c+b\right)\)\(\le\dfrac{\left[a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}{4}=\dfrac{\left(a+b+c\right)^6}{4}=\dfrac{729}{4}\)
=> dpcm
giúp jum t @Neet;@Ace Legona (có cách khác AM-GM thì qá tốt nha!!)
\(=\dfrac{3\cdot7\cdot3^4\cdot3^6+3^6\cdot3^4\cdot3^3}{3^2\cdot3^4\cdot2\cdot3^{12}\cdot13+3^2\cdot2\cdot3^3\cdot2\cdot3^4\cdot2\cdot3^2+723\cdot729}\)
\(=\dfrac{3^{11}\cdot7+3^{13}}{3^{18}\cdot26+3^{11}\cdot8+3^7\cdot241}\)
\(=\dfrac{3^{11}\left(7+9\right)}{3^7\left(3^{11}\cdot26+3^4\cdot8+241\right)}=\dfrac{3^7\cdot16}{17\cdot101\cdot2683}\)