K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

\(\frac{13}{30}+\frac{-1}{5}=\frac{13}{30}+\frac{-6}{30}=\frac{7}{30}\)

\(\frac{2}{21}+\frac{1}{28}=\frac{8}{84}+\frac{3}{84}=\frac{11}{84}\)

\(2+\frac{-3}{4}=\frac{8}{4}+\frac{-3}{4}=\frac{5}{4}\)

\(\frac{13}{5}+\frac{5}{3}=\frac{39}{15}+\frac{25}{15}=\frac{64}{15}\)

chúc bạn học tốt !!!

12 tháng 8 2020

/ là phân số nha

11/13-(5/42-x)=(15/28-11/13)

11/13-(5/42-x)=-37/182

(5/42-x)=11/13+37/182

(5/42-x)=191/182

x=5/42-191/182

x=-254/273

vậy x=-254/273

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

22 tháng 8 2019

lớp 1 mà cậu

22 tháng 8 2019

4.24.52-(33.18+33.12)

=4.24.25-[27.(18+12)]

=(4.25).24-[27.30]

=100.24-810

=2400-810

=1590

24 tháng 10 2021

1: \(\dfrac{4}{23}+\dfrac{5}{21}+\dfrac{1}{2}-\dfrac{4}{23}+\dfrac{16}{21}\)

\(=1+\dfrac{1}{2}\)

\(=\dfrac{3}{2}\)

2: \(\left(\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}\right)-\left(\dfrac{79}{67}-\dfrac{28}{41}\right)\)

\(=\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}-\dfrac{79}{67}+\dfrac{28}{41}\)

\(=\dfrac{1}{3}\)

24 tháng 8 2018

90 nha 

23 tháng 8 2018

a) x= \(\frac{-5}{12}\)

b) x = \(\frac{2}{5}\)

c) x =\(\frac{-87}{140}\)

d) x = \(\frac{109}{140}\)

e) x = \(\frac{13}{63}\)

23 tháng 8 2018

Làm đầy đủ nha , mk thick cho , đừng viết kết quả 

15 tháng 3 2020

12) 17 – 11 – 14 – (-39)

=17-11-14+39

=6-14+39

=-8+39

=31

13) −127 - 18.( 5 - 6)

=-127-18.1

=-145
14) 100 + (+430) + 2145 + (-530)

=530+2145-530

=(530-530)+2145

=0+2145

=2145
15) (+12).13 + 13.(-22)

=13.[12+(-22)]

=13.(-10)

=-130
16) {[14 : (-2)] + 7} : 2012

={-7+7}:2012

=0:2012

=0
17) 13 – 18 – (- 42) - 15

=13-18+42-15

=-5+42-15

=37-15

=22
18) 369 – 4[(-5) + 4.(-8)]

=369-4[-5+(-32)]

=369-4(-37)

=369+148

=517
19) (-12).(-13) +13.(-29)

=12.13+13.(-29)=13.[12+(-29)]=13.(-17)=-221

20) 125 – 4[ 3 – 7.(-2) ]

=125-4[3+14]

=125-4.17

=125-68

=57
21) (-14).9 – 13.(-9)

=(-14).9+13.9

=9.[-14+13]

=9.(-1)

=-9

8 tháng 11 2021

âm 9 nha bạn
 

27 tháng 3 2024

a; \(\dfrac{9}{4}\) - \(\dfrac{-11}{4}\)

\(\dfrac{9}{4}\) + \(\dfrac{11}{4}\)

\(\dfrac{20}{4}\)

= 5 

b; \(\dfrac{7}{8}\) - \(\dfrac{3}{-8}\) - \(\dfrac{1}{8}\)

=  \(\dfrac{7}{8}\) + \(\dfrac{3}{8}\) - \(\dfrac{1}{8}\)

\(\dfrac{7+3-1}{8}\)

\(\dfrac{9}{8}\) 

27 tháng 3 2024

c; \(\dfrac{-5}{21}\) - \(\dfrac{25}{21}\) - \(\dfrac{-1}{21}\)

  = \(\dfrac{-5}{21}\) - \(\dfrac{25}{21}\) + \(\dfrac{1}{21}\)

 =  \(\dfrac{-5-25+1}{21}\)

\(\dfrac{-29}{21}\)

1 tháng 2 2024

câu 1) 

\(\dfrac{-12}{18}+\left(\dfrac{-21}{35}\right)=\dfrac{-19}{15}\)
câu 2) 

\(-\dfrac{3}{21}+\dfrac{6}{42}=0\)
câu 3)

\(-\dfrac{18}{24}+\dfrac{15}{21}=-\dfrac{1}{28}\)
câu 4) 

\(\dfrac{1}{6}+\dfrac{2}{5}=\dfrac{17}{30}\)
câu 5) 

\(\dfrac{3}{5}+\left(-\dfrac{7}{4}\right)=-\dfrac{23}{20}\)
câu 6) 

\(\left(-2\right)+\left(\dfrac{-5}{8}\right)=\dfrac{-21}{8}\)
câu 7) 

\(\dfrac{1}{-8}+\left(-\dfrac{5}{9}\right)=-\dfrac{49}{72}\)
câu 8) 

\(\dfrac{4}{13}+\dfrac{12}{39}=\dfrac{8}{13}\)
câu 9) 

\(\dfrac{1}{21}+\dfrac{1}{28}=\dfrac{1}{12}\)
câu 10) 

\(-\dfrac{3}{29}+\dfrac{16}{58}=\dfrac{5}{29}\)
câu 11) 

\(\dfrac{8}{40}+\left(-\dfrac{36}{45}\right)=-\dfrac{3}{5}\)
câu 12) 

\(-\dfrac{8}{18}+\left(-\dfrac{15}{27}\right)=-1\)
câu 13) 

\(\dfrac{13}{30}+\left(-\dfrac{1}{5}\right)=\dfrac{7}{30}\)
câu 14) 

\(\dfrac{2}{21}+\dfrac{1}{28}=\dfrac{11}{84}\)
câu 15) 

\(5+\left(-\dfrac{3}{4}\right)=\dfrac{17}{4}\)
câu 16) 

\(\dfrac{18}{24}+\dfrac{45}{-10}=-\dfrac{15}{4}\)

23 tháng 1 2020

                                                                Bài giải

a, \(\frac{4}{5}-\frac{2}{3}+\frac{1}{5}-\frac{1}{3}\)

\(=\left(\frac{4}{5}+\frac{1}{5}\right)-\left(\frac{2}{3}+\frac{1}{3}\right)=1-1=0\)

b, \(\frac{2}{5}\text{ x }\frac{7}{4}-\frac{2}{5}\text{ x }\frac{3}{7}\)

\(=\frac{2}{5}\text{ x }\left(\frac{7}{4}-\frac{3}{7}\right)=\frac{2}{5}\text{ x }\frac{37}{28}=\frac{37}{70}\)

c, \(\frac{13}{4}\text{ x }\frac{2}{3}\text{ x }\frac{4}{13}\text{ x }\frac{3}{12}=\frac{13\text{ x }2\text{ x }4\text{ x }3}{4\text{ x }3\text{ x }13\text{ x }12}=\frac{1}{6}\)

d,  \(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)

\(=\frac{3}{4}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)

\(=\left(\frac{3}{4}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{13}{32}\right)\)

\(=1+1+1\)

\(=3\)

e, \(\frac{2}{5}+\frac{6}{9}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)

\(=\frac{2}{5}+\frac{2}{3}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)

\(=\frac{1}{5}\left(2+3\right)+\frac{1}{3}\left(2+1\right)+\frac{1}{4}\left(3+1\right)\)

\(=\frac{1}{5}\cdot5+\frac{1}{3}\cdot3+\frac{1}{4}\cdot4\)

\(=1+1+1\)

\(=3\)

23 tháng 1 2020

a, \(\frac{4}{5}-\frac{2}{3}+\frac{1}{5}-\frac{1}{3}\)

\(=\left(\frac{4}{5}+\frac{1}{5}\right)-\left(\frac{2}{3}+\frac{1}{3}\right)=1-1=0\)

b, \(\frac{2}{5}\text{ x }\frac{7}{4}-\frac{2}{5}\text{ x }\frac{3}{7}\)

\(=\frac{2}{5}\text{ x }\left(\frac{7}{4}-\frac{3}{7}\right)=\frac{2}{5}\text{ x }\frac{37}{28}=\frac{37}{70}\)

c, \(\frac{13}{4}\text{ x }\frac{2}{3}\text{ x }\frac{4}{13}\text{ x }\frac{3}{12}=\frac{13\text{ x }2\text{ x }4\text{ x }3}{4\text{ x }3\text{ x }13\text{ x }12}=\frac{1}{6}\)

d,  \(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)

\(=\frac{3}{4}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)

\(=\left(\frac{3}{4}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{13}{32}\right)\)

\(=1+1+1\)

\(=3\)

e, \(\frac{2}{5}+\frac{6}{9}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)

\(=\frac{2}{5}+\frac{2}{3}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)

\(=\frac{1}{5}\left(2+3\right)+\frac{1}{3}\left(2+1\right)+\frac{1}{4}\left(3+1\right)\)

\(=\frac{1}{5}\cdot5+\frac{1}{3}\cdot3+\frac{1}{4}\cdot4\)

\(=1+1+1\)

\(=3\)