Cho x, y >0
Tìm Min A = x/y + y/x +xy/ x² + y²
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
\(\dfrac{x^2+y^2}{xy}=t;x,y>0\Rightarrow t\ge2\) khi x=y
\(A=t+\dfrac{1}{t}\ge2+\dfrac{1}{2}=\dfrac{5}{2}\)
\(A-\dfrac{5}{2}=\left(t-2\right)+\left(\dfrac{1}{t}-\dfrac{1}{2}\right)=\left(t-2\right)-\dfrac{\left(t-2\right)}{2t}=\dfrac{\left(2t-1\right)\left(t-2\right)}{2t}\)
\(t\ge2\Rightarrow\left\{{}\begin{matrix}2t-1>0\\t-2\ge0\\2t>0\end{matrix}\right.\)\(\Rightarrow\dfrac{\left(2t-1\right)\left(t-2\right)}{2t}\ge0\) đẳng thức khi t=2
\(\Rightarrow A-\dfrac{5}{2}\ge0\Rightarrow A\ge\dfrac{5}{2}\)
Vậy GTNN (A) =5/2 khi x=y
* Với x , y > 0 , áp dụng BĐT cauchy ta có :
+) \(\dfrac{x+y}{\sqrt{xy}}+\dfrac{4\sqrt{xy}}{x+y}\ge2\sqrt{\dfrac{\left(x+y\right)4\sqrt{xy}}{\sqrt{xy}\left(x+y\right)}}=4\) (1)
+) \(x+y\ge2\sqrt{xy}>0\) \(\Leftrightarrow\) \(\dfrac{1}{x+y}\le\dfrac{1}{2\sqrt{xy}}\)
\(\Leftrightarrow\) \(\dfrac{-3\sqrt{xy}}{x+y}\ge\dfrac{-3\sqrt{xy}}{2\sqrt{xy}}=\dfrac{-3}{2}\) (2)
* Từ (1) và (2)
\(\Rightarrow\) \(D\ge4-\dfrac{3}{2}=\dfrac{5}{2}\) . Dấu '' = '' xra khi x = y
\(A=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}\)
\(A=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\)
\(A=\frac{3}{4}\cdot\frac{x^2+y^2}{xy}+\frac{x^2+y^2}{4xy}+\frac{xy}{x^2+y^2}\) (1)
+ có : \(\left(x-y\right)^2\ge0\forall x;y\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Rightarrow\frac{x^2+y^2}{xy}\ge2\) mà x;y > 0
\(\Rightarrow\frac{3}{4}\cdot\frac{x^2+y^2}{xy}\ge\frac{3}{2}\) (2)
có : \(x^2+y^2>0;xy>0\)
nên \(\frac{x^2+y^2}{4xy}>0;\frac{xy}{x^2+y^2}>0\)
áp dụng bđt Cô si ta có :
\(\frac{x^2+y^2}{4xy}+\frac{xy}{x^2+y^2}\ge2\sqrt{\frac{x^2+y^2}{4xy}\cdot\frac{xy}{x^2+y^2}}\)
\(\Rightarrow\frac{x^2+y^2}{4xy}+\frac{xy}{x^2+y^2}\ge1\) (3)
(1)(2)(3) \(\Rightarrow A\ge\frac{3}{2}+1\Rightarrow A\ge\frac{5}{2}\)
\(A=\frac{5}{2}\) khi \(\hept{\begin{cases}x=y\\\frac{x^2+y^2}{4xy}=\frac{xy}{x^2+y^2}\end{cases}\Leftrightarrow x=y>0}\)