K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2020

\(x^2-y^2+4y=2015\)

\(\Leftrightarrow x^2-\left(y^2+4y+4\right)=2011\)

\(\Leftrightarrow x^2-\left(y+2\right)^2=2011\)

\(\Leftrightarrow\left(x-y-2\right)\left(x-y+2\right)=2011=1\cdot2011=2011\cdot1=\left(-1\right)\left(-2011\right)=\left(-2011\right)\left(-1\right)\)

Để ý 2011 là số nguyên tố nhé,đến đây bạn xét ước đơn giản thôi nha !!!!

19 tháng 12 2020

A= -x2+2x+3

=>A= -(x2-2x+3)

=>A= -(x2-2.x.1+1+3-1)

=>A=-[(x-1)2+2]

=>A= -(x+1)2-2

Vì -(x+1)≤0=> A≤-2

Dấu "=" xảy ra khi

-(x+1)2=0 => x=-1

Vây A lớn nhất= -2 khi x= -1

19 tháng 12 2020

B=x2-2x+4y2-4y+8

=> B= (x2-2x+1)+(4y2-4y+1)+6

=> B=(x-1)2+(2y+1)2+6

=> B lớn nhất=6 khi x=1 và y=-1/2

12 tháng 1 2021

\(x^2-2x+y^2+4y-4< 0\)

⇔ \(\left(x-1\right)^2+\left(y+2\right)^2< 9\)

Mà \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\) và 2 số này đều là bình phương của một số nguyên

Nên ta có các trường hơpj

TH1 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\) (TM)

TH2 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=1\\\left(y+2\right)^2=1\end{matrix}\right.\) .....

TH3 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=4\\\left(y+2\right)^2=1\end{matrix}\right.\) .....

Thôi tự túc mấy trường hợp còn lại. Nghi đề sai lắm :((

 

12 tháng 1 2021

xin lỗi đề mình đánh sai phải là -4y+4

28 tháng 3 2023

x=1 , y= 2

28 tháng 3 2023

2019.\(x^2\) + y2 = 2023

Dùng phương pháp đánh giá tìm nghiệm nguyên em nhé.

Vì \(x\), y \(\in\) Z+ => \(x\); y ≥ 1

Với \(x\) = 1; y = 1 => 2019.12 + 12 = 2020 (loại)

Với \(x\) = 1; y = 2 => 2019.12 + 22 = 2023 ( thỏa mãn)

Với \(x\) > 1; y > 2 => 2019.\(x\) + y > 2019.12 + 22 = 2023

Vậy \(x\) = 1; y = 2 là  nghiệm nguyên duy nhất thỏa mãn đề bài.

Kết luận: (\(x\); y) =( 1; 2)

 

26 tháng 1 2022

PT <=> \(\left(y+2\right)x^2=y^2-1\)

- Nếu y = -2 <=> \(\left(-2\right)^2-1=0\) (vô lí)

=> \(y\ne-2\)

PT <=> \(x^2=\dfrac{y^2-1}{y+2}\)

Có \(x\in Z\Rightarrow x^2\in Z\)

=> \(\dfrac{y^2-1}{y+2}\in Z\)

=> \(y^2-1⋮y+2\)

=> \(y\left(y+2\right)-2\left(y+2\right)+3⋮y+2\)

=> \(3⋮y+2\)

Ta có bảng

y+213-1-3
y-11-3-5
x0 (Tm)0 (Tm)\(\varnothing\)\(\varnothing\)

KL: Vậy phương trình có tập nghiệm\(\left(x;y\right)=\left\{\left(0;1\right);\left(0;-1\right)\right\}\)

 

15 tháng 1 2022

Ta có x+ x+ 1 = y2

Lại có x+ 2x+ 1 ≥ x+ x+ 1 hay (x2 + 1)2 ≥ x+ x+ 1

=> (x2 + 1)2 ≥ y(1)

Lại có x+ x+ 1 > x4 => y2 > x4 (2)

Từ (1) và (2), ta có x4 < y2 ≤ (x2 + 1)2

<=> y2 = (x2 + 1)2 = x+ 2x+ 1

Mà x+ x+ 1 = y=> x+ 2x+ 1 = x+ x+ 1

<=> x2 = 0 <=> x = 0

Thay vào, ta có 1 = y<=> y ∈ {-1,1}

Vậy ...

 

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

$3^x.x^2=4y(y+1)$ nên $x$ chẵn. Đặt $x=2a$ ta có:

$3^{2a}.a^2=y(y+1)\Leftrightarrow (3^a.a)^2=y(y+1)$

Dễ thấy $(y,y+1)=1$ nên để tích của chúng là scp thì $y,y+1$ là scp.

Đặt $y=m^2; y+1=n^2$ với $m,n$ tự nhiên.

$\Rightarrow 1=(n-m)(n+m)$

$\Rightarrow n=1; m=0\Rightarrow y=0\Rightarrow x=0$

27 tháng 9 2017

\(pt\Leftrightarrow20x+20y+50=25xy\)

\(\Leftrightarrow5y\left(5x-4\right)-4\left(5x-4\right)=66\)

\(\Leftrightarrow\left(5x-4\right)\left(5y-4\right)=66\)

đến đây thì dễ rồi