K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng vơi ΔABC

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

BH=12^2/20=7,2cm

c: \(S_{ABC}=\dfrac{1}{2}\cdot12\cdot16=6\cdot16=96\left(cm^2\right)\)

a: Xét ΔACI vuông tại C và ΔAHB vuông tại H có

góc CAI=góc HAB

=>ΔACI đồng dạng với ΔAHB

b: Xét ΔHBI và ΔHAB có

góc HBI=góc HAB

góc H chung

=>ΔHBI đồng dạng với ΔHAB

=>HB/HA=HI/HB

=>HB^2=HA*HI

c: CD/DA=CK/KA=CB/CA

NV
8 tháng 4 2023

a.

Xét hai tam giác AIC và ABH có:

\(\left\{{}\begin{matrix}\widehat{CAI}=\widehat{BAH}\left(\text{Ax là phân giác}\right)\\\widehat{ACI}=\widehat{AHB}=90^0\left(gt\right)\end{matrix}\right.\) 

\(\Rightarrow\Delta AIC\sim\Delta ABH\left(g.g\right)\) (1)

b.

Xét hai tam giác AIC và BIH có:

\(\left\{{}\begin{matrix}\widehat{AIC}=\widehat{BIH}\left(\text{đối đỉnh}\right)\\\widehat{ACI}=\widehat{BHI}=90^0\end{matrix}\right.\)  \(\Rightarrow\Delta AIC\sim\Delta BIH\left(g.g\right)\) (2)

(1);(2) \(\Rightarrow\Delta ABH\sim\Delta BIH\)

\(\Rightarrow\dfrac{AH}{BH}=\dfrac{BH}{IH}\Rightarrow BH^2=HI.HA\)

c.

Áp dụng định lý phân giác trong tam giác ACK: \(\dfrac{CD}{DA}=\dfrac{CK}{AK}\) (3)

Xét hai tam giác ABC và ACK có:

\(\left\{{}\begin{matrix}\widehat{CAB}\text{ chung}\\\widehat{BCA}=\widehat{CKA}=90^0\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\Delta ABC\sim\Delta ACK\left(g.g\right)\)

\(\Rightarrow\dfrac{BC}{CK}=\dfrac{AC}{AK}\Rightarrow\dfrac{BC}{AC}=\dfrac{CK}{AK}\) (4)

(3);(4) \(\Rightarrow\dfrac{CD}{DA}=\dfrac{BC}{AC}\)

a) Xét ΔABC vuông tại B và ΔAHB vuông tại H có 

\(\widehat{BAH}\) chung

Do đó: ΔABC\(\sim\)ΔAHB(g-g)

b) Xét ΔCED vuông tại D và ΔBEH vuông tại H có 

\(\widehat{CED}=\widehat{BEH}\)(hai góc đối đỉnh)

Do đó: ΔCED\(\sim\)ΔBEH(g-g)

Suy ra: \(\dfrac{CE}{BE}=\dfrac{CD}{BH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(BH\cdot CE=CD\cdot BE\)(Đpcm)

16 tháng 5 2015

Tự vẽ hình nha

a) xét tam giác HAB và tam giác ABC

góc AHB = góc ABC

góc CAB : chung

Suy ra : tam giác AHB ~ tam giác ABC ( g-g )

b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :

AC2 + AB2 = BC2

162 + 122 = BC2

400          = BC2

=> BC = \(\sqrt{400}\)= 20 ( cm )

ta có tam giác HAB ~ tam giác ABC ( câu a )

=> \(\frac{AH}{AC}=\frac{AB}{BC}hay\frac{AH}{16}=\frac{12}{20}\)

=> AH = \(\frac{12.16}{20}=9,6\)( cm )

Độ dài cạnh BH là 

Áp dụng định lí py - ta - go vào tam giác HBA ta được : 

AH+ BH2 = AB2

BH2          = AB2 - AH2

BH2             = 122 - 9,62

BH2              = 51,84 

=> BH       = \(\sqrt{51,84}\) = 7,2 ( cm )

c) Vì AD là đường phân giác của tam giác ABC nên :

\(\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BC-CD}=\frac{AC}{CD}\)

                    <=>   \(\frac{AB.CD}{CD\left(BC-CD\right)}=\frac{AC\left(BC-CD\right)}{CD\left(BC-CD\right)}\)

                    <=>   AB.CD               =   AC(BC - CD)

                    hay   12CD                 =   16.20 - 16CD

                     <=>  12CD+ 16CD      =   320

                     <=>             28CD      =   320

                     <=>                 CD     =    \(\frac{320}{28}\approx11.43\left(cm\right)\)

Độ dài cạnh BD là :

BD = BC - CD

BD = 20 - \(\frac{320}{28}\)\(\approx\) 8,57 ( cm )

16 tháng 5 2015

Cho hỏi đồng dạng là sao bạn???Tớ mới học lớp 7 thôi,nên chưa biết ^^

4 tháng 5 2023

Hình vẽ:

B A H C 5cm 12cm

Giải

a. Xét ΔHBA và ΔABC có:

\(\widehat{B}\)  chung

\(\widehat{BHA}=\widehat{BAC}=90^0\)

⇒ΔHBA ∼ ΔABC (g.g)

b. Xét ΔABC vuông tại A có:

\(BC^2=AB^2+AC^2\)(định lí py-ta-go)

         \(=5^2+12^2\)

         \(=169\)

\(\rightarrow BC=\sqrt{169}=13\left(cm\right)\)

Vì ΔABC ∼ ΔHBA (cmt)

\(\rightarrow\dfrac{AB}{BH}=\dfrac{AC}{AH}=\dfrac{BC}{AB}hay\dfrac{5}{BH}=\dfrac{12}{AH}=\dfrac{13}{5}\)

\(BH=\dfrac{5.5}{13}=\dfrac{25}{13}\left(cm\right)\)

\(AH=\dfrac{12.5}{13}=\dfrac{60}{13}\left(cm\right)\)

26 tháng 2 2017

a ,   Δ A B C ,   A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H ,   H ⏜ = 90 0   g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b ,   Δ A B C ,   A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2

a: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

AH=15*20/25=12cm

BH=15^2/25=9cm

CH=25-9=16cm

b: Xet ΔABC vuông tại A và ΔDHC vuông tại D có

góc C chung

=>ΔABC đồng dạng với ΔDHC

c: \(\dfrac{S_{ABC}}{S_{DHC}}=\left(\dfrac{BC}{HC}\right)^2=\left(\dfrac{25}{16}\right)^2\)

=>\(S_{DHC}=150:\dfrac{625}{256}=61.44\left(cm^2\right)\)

Đề 1: 

a: Xét ΔABH vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay HB=18(cm)

Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)

Xét ΔACH vuông tại H có 

\(AC^2=AH^2+HC^2\)

nên AC=40(cm)

b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có

\(\widehat{HAC}=\widehat{HDB}\)

Do đó: ΔAHC\(\sim\)ΔDHB

Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)

hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)

a: Xet ΔABC vuông tại B và ΔAHB vuông tại H có

góc A chung

=>ΔABC đồng dạng với ΔAHB

b: Xét ΔDEC vuông tại D và ΔHEB vuông tại H có

góc DEC=góc HEB

=>ΔDEC đồng dạng với ΔHEB

=>DE/HE=DC/HB=EC/EB

=>DC*EB=HB*EC

c: ED/EH=EC/EB

=>ED/EC=EH/EB

=>ΔEDH đồng dạng với ΔECB

e:

Xét ΔCFB có

BD,CH là đường cao

BD cắt CH tại E

=>E là trực tâm

=>FE vuông góc BC

=>FE//AB

Xét ΔHBA vuông tại H và ΔHFE vuông tại H có

HA=HE

góc HBA=góc HFE

=>ΔHBA=ΔHFE

=>HB=HF

Xét tứ giác BEFA có

BF cắt EA tại trung điểm của mỗi đường
BF vuông góc EA

=>BEFA là hình thoi