Giải bất phương trình
(19x-5)(3x+2)(2-9x)>0
Làm đúng thì được tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam thức bậc hai \(f\left( x \right) = 2{x^2} - 15x + 28\) có hai nghiệm phân biệt là \({x_1} = \frac{7}{2};{x_2} = 4\)
và có \(a = 2 > 0\) nên \(f\left( x \right) \ge 0\) khi x thuộc hai nửa khoảng \(\left( { - \infty ;\frac{7}{2}} \right];\left[ {4; + \infty } \right)\)
Vậy tập nghiệm của bất phương trình \(2{x^2} - 15x + 28 \ge 0\) là \(\left( { - \infty ;\frac{7}{2}} \right] \cup \left[ {4; + \infty } \right)\)
b) Tam thức bậc hai \(f\left( x \right) = - 2{x^2} + 19x + 255\) có hai nghiệm phân biệt là \({x_1} = - \frac{{15}}{2};{x_2} = 17\)
và có \(a = - 2 < 0\) nên \(f\left( x \right) > 0\) khi x thuộc khoảng \(\left( { - \frac{{15}}{2};17} \right)\)
Vậy tập nghiệm của bất phương trình \( - 2{x^2} + 19x + 255 > 0\) là \(\left( { - \frac{{15}}{2};17} \right)\)
c) \(12{x^2} < 12x - 8 \Leftrightarrow 12{x^2} - 12x + 8 < 0\)
Tam thức bậc hai \(f\left( x \right) = 12{x^2} - 12x + 8\) có \(\Delta = - 240 < 0\) và \(a = 12 > 0\)
nên \(f\left( x \right) = 12{x^2} - 12x + 8\) dương với mọi x
Vậy bất phương trình \(12{x^2} < 12x - 8\) vô nghiệm
d) \({x^2} + x - 1 \ge 5{x^2} - 3x \Leftrightarrow -4{x^2} + 4x - 1 \ge 0\)
Tam thức bậc hai \(f\left( x \right) = -4{x^2} + 4x - 1\) có \(\Delta = 4^2 - 4.(-4).(-1)\)
Do đó tam thức bậc hai có nghiệm kép \({x_1} = {x_2}= \frac{1}{2}\) và a = - 4 < 0
Vậy bất phương trình \({x^2} + x - 1 \ge 5{x^2} - 3x\) có tập nghiệm S = {\(\frac{1}{2}\)}
Ta có
g ' ( x ) = ( 2 x + 3 ) . ( x − 2 ) − 1. ( x 2 + 3 x − 9 ) ( x − 2 ) 2 = x 2 − 4 x + 3 ( x − 2 ) 2
Mà g ' ( x ) ≤ 0
⇔ x 2 − 4 x + 3 ≤ 0 x − 2 ≠ 0 ⇔ 1 ≤ x ≤ 3 x ≠ 2 ⇔ x ∈ 1 ; 3 \ 2
Vậy tập nghiệm bất phương trình là: S=[1 ; 3]\{2}
Chọn đáp án B
Nếu \(x^2-9x+14=\left(x-7\right)\left(x-2\right)\ge0\)
\(\Leftrightarrow\)\(x\ge7;\)\(x\le2\)
thì \(\left|x^2-9x+14\right|=x^2-9x+14\)
Khi đó bpt trở thành: \(x^2-9x+14+3x>x^2-4\)
\(\Leftrightarrow\)\(-6x>-18\)
\(\Leftrightarrow\) \(x< 3\)(thỏa mãn)
Nếu \(x^2-9x+14=\left(x-7\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\)\(2< x< 7\)
thì \(\left|x^2-9x+14\right|=-x^2+9x-14\)
Khi đó bpt trở thành: \(-x^2+9x-14+3x>x^2-4\)
\(\Leftrightarrow\)\(-2x^2+12x-10>0\)
\(\Leftrightarrow\) \(x^2-6x+5< 0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-5\right)< 0\)
\(\Leftrightarrow\) \(1< x< 5\) (thỏa mãn)
Vậy...
\(9x^2+\sqrt{4x-5}>\sqrt{x}+25\)
ĐK: \(x\ge\frac{5}{4}\)
\(9x^2+\sqrt{4x-5}>\sqrt{x}+25\)
<=> \(9x^2-25+\sqrt{4x-5}-\sqrt{x}>0\)
<=> \(\left(3x-5\right)\left(3x+5\right)+\frac{3x-5}{\sqrt{4x-5}+\sqrt{x}}>0\)
<=> \(\left(3x-5\right)\left(3x+5+\frac{1}{\sqrt{4x-5}+\sqrt{x}}\right)>0\)
<=> 3x - 5 > 0 vì \(3x+5+\frac{1}{\sqrt{4x-5}+\sqrt{x}}>0\) với mọi \(x\ge\frac{5}{4}\)
<=> x > 5/3 thỏa mãn đk
(x2 - 3x + 2)(x2 - 9x + 20) = 40
=> (x - 2)(x - 1)(x - 4)(x - 5) = 40
=> (x - 2)(x - 4)(x - 1)(x - 5) = 40
=> (x2 - 6x + 8)(x2 - 6x + 5) = 40
Đặt x2 - 6x + 5 = a , pt trở thành:
(a + 3).a = 40 => a2 + 3a - 40 = 0 => (a + 8)(a - 5) = 0 => a = -8 hoặc a = 5
+) Với a = -8 => x2 - 6x + 5 = -8 => x2 - 6x + 13 = 0 , mà x2 - 6x + 13 > 0 => vô nghiệm
+) Với a = 5 => x2 - 6x + 5 = 5 => x2 - 6x = 0 => x(x - 6) = 0 => x = 0 hoặc x = 6
Vậy x = 0, x = 6