\(|x+\frac{1}{2}|-\frac{2}{3}=\sqrt{\frac{16}{9}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bằng 1 phép so sánh đơn giản \(\frac{1}{\sqrt{x+1}+1}>\frac{1}{\sqrt{x+100}+10}\) ; \(\forall x\ge-1\)
Ta suy ra luôn pt này vô nghiệm
a) \(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=\frac{-21}{4}\)
\(2x=\frac{-4}{63}\)
\(x=\frac{2}{63}\)
b) \(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}\)
Vậy.........
\(\left|x+\frac{1}{2}\right|-\frac{2}{3}=\sqrt{\frac{16}{9}}\)
\(\left|x+\frac{1}{2}\right|-\frac{2}{3}=\frac{4}{3}\)
\(\left|x+\frac{1}{2}\right|=\frac{4}{3}+\frac{2}{3}\)
\(\left|x+\frac{1}{2}\right|=2\)
TH1: \(x+\frac{1}{2}=2\)
\(x=2-\frac{1}{2}\)
\(x=\frac{3}{2}\)
TH2: \(x+\frac{1}{2}=-2\)
\(x=-2-\frac{1}{2}\)
\(x=\frac{-5}{2}\)
KL: x =3/2 hoặc x= -5/2
\(\left|x+\frac{1}{2}\right|-\frac{2}{3}=\sqrt{\frac{16}{9}}\)
\(\Leftrightarrow\left|x+\frac{1}{2}\right|-\frac{2}{3}=\frac{4}{3}\)
\(\Leftrightarrow\left|x+\frac{1}{2}\right|=\frac{8}{3}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{8}{3}\\x+\frac{1}{2}=-\frac{8}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{13}{6}\\x=-\frac{19}{6}\end{cases}}\)
vậy.....
k) ĐK: $x^2\geq 5$
PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$
$\Leftrightarrow 2\sqrt{x^2-5}=4$
$\Leftrightarrow \sqrt{x^2-5}=2$
$\Rightarrow x^2-5=4$
$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)
l) ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$
$\Leftrightarrow 4\sqrt{x+1}=4$
$\Leftrightarrow \sqrt{x+1}=1$
$\Rightarrow x+1=1$
$\Rightarrow x=0$
m)
ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$
$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$
$\Leftrightarrow 4\sqrt{x+1}=16$
$\Leftrightarrow \sqrt{x+1}=4$
$\Rightarrow x=15$ (thỏa mãn)
h)
ĐKXĐ: $x\geq -5$
PT $\Leftrightarrow \sqrt{x+5}=6$
$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)
i) ĐKXĐ: $x\geq 5$
PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)
\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)
j)
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$
$\Leftrightarrow -2\sqrt{2x}+4=0$
$\Leftrightarrow \sqrt{2x}=2$
$\Rightarrow x=2$ (thỏa mãn)
\(\left|x+\frac{1}{2}\right|-\frac{2}{3}=\sqrt{\frac{16}{9}}\)
\(\Leftrightarrow\left|x+\frac{1}{2}\right|-\frac{2}{3}=\frac{4}{3}\)
\(\Leftrightarrow\left|x+\frac{1}{2}\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=2\\x+\frac{1}{2}=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{5}{2}\end{cases}}\)
Vậy \(x\in\left\{\frac{3}{2};-\frac{5}{2}\right\}\)
\(|x+\frac{1}{2}|-\frac{2}{3}=\sqrt{\frac{16}{9}}\)
<=> \(|x+\frac{1}{2}|-\frac{2}{3}=\frac{4}{3}\)
<=> \(|x+\frac{1}{2}|=\frac{4}{3}+\frac{2}{3}\)
<=> \(|x+\frac{1}{2}|=\frac{6}{3}=2\)
TH1: x + 1/2 = 2
x = 2 - 1/2 = 3/2
TH2: x + 1/2 = -2
x = -2 -1/2 = -5/2
Vậy:...