cho A=20162016+2 trên 20162016-1
B=20162016 trên 20162016-3
HÃY SO SÁNH A VÀ B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{20152015}{20162016}+\frac{20162016}{20162016}\)
\(=\frac{2015\times10001}{2016\times10001}+\frac{2016\times10001}{2016\times10001}\)
\(=\frac{2015}{2016}+\frac{2016}{2016}\)
\(=\frac{4031}{2016}\)
( 20152015/20162016 + 20172017/20162016 ) . x - 1 = 2016
2.x-1=2016
2x=2017
x=2017:2
x=1008,5
Ta có: \(A=2015\cdot10001\cdot2016\cdot100010001=2015\cdot2016\cdot10001\cdot100010001\)
\(B=2016\cdot10001\cdot2015\cdot100010001=2015\cdot2016\cdot10001\cdot100010001\)
\(\Rightarrow A=B\)(Dấu . là nhân)
a = 2015 x 20162016
A = 2015 x 10001 x 2016
B = 2016 x 20152015
B = 2016 x 10001 x 2015
=> A = B
Ta thấy:
A = \(\frac{20162017}{20162016}\) và B = \(\frac{20152016}{20152015}\)
A = \(\frac{20162016}{20162016}\)+ \(\frac{1}{20162016}\) = \(1\) + \(\frac{1}{20162016}\)
B = \(\frac{20152015}{20152015}\) + \(\frac{1}{20152015}\)= \(1\) + \(\frac{1}{20152015}\)
Vì: \(\frac{1}{20162016}\) \(< \) \(\frac{1}{20152015}\)
Nên: \(A\) \(< \) \(B\)
~ HokT~
a/ \(3^{150}=\left(3^2\right)^{75}=9^{75}\)
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(9^{75}>8^{75}\Rightarrow3^{150}>2^{225}\)
b/
\(20162016^{10}=\left(2016.10001\right)^{10}=2016^{10}10001^{10}\)
\(2016^{20}=2016^{10}.2016^{10}\)
\(10001^{10}>2016^{10}\Rightarrow2016^{10}.10001^{10}>2016^{10}.2016^{10}\Rightarrow20162016^{10}>2016^{20}\)
c/ \(\frac{222^{333}}{333^{222}}=\frac{\left(222^3\right)^{111}}{\left(333^2\right)^{111}}=\frac{\left(2^3.111^3\right)^{111}}{\left(3^2.111^2\right)^{111}}=\left(\frac{8.111}{9}\right)^{111}\)
\(\frac{888}{9}>1\Rightarrow\left(\frac{888}{9}\right)^{111}>1\Rightarrow222^{333}>333^{222}\)
a) Ta có: 3^150 = 3^2.75 = (3^2)^75 = 9^75
2^225 = 2^3.75 = (2^3)^75 = 8^75
Vì 9 > 8 nên 9^75 > 8^75
Vậy 3^150 > 2^225
b) Ta có: 2016^20 = 2016^10+10 = 2016^10 . 2016^10
20162016^10 = (10001 . 2016)^10 = 10001^10 . 2016^10
Vì 2016^10 < 10001^10 nên 2016^10 . 2016^10 < 10001^10 . 2016^10
Vậy 2016^20 < 20162016^10
Có : \(A=\frac{2016^{2016}+2}{2016^{2016}-1}\)
\(\Leftrightarrow A=\frac{2016^{2016}-1+3}{2016^{2016}-1}\)
\(\Leftrightarrow A=1+\frac{3}{2016^{2016}-1}\)
Có : \(B=\frac{2016^{2016}}{2016^{2016}-3}\)
\(\Leftrightarrow B=\frac{2016^{2016}-3+3}{2016^{2016}-3}\)
\(\Leftrightarrow B=1+\frac{3}{2016^{2016}-3}\)
Ta thấy : \(2016^{2016}-1>2016^{2016}-3\)
\(\Leftrightarrow\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)
\(\Leftrightarrow1+\frac{3}{2016^{2016}-1}< 1+\frac{3}{2016^{2016}-3}\)
\(\Leftrightarrow A< B\)