Cho A= 2 + 2^2 + 2^3 + 2^4 + 2^5 +. . . + 2^90
Chứng tỏ A chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
A chia hết cho 15 nên A chia hết cho 3 và A chia hết cho 5
Do dãy A có 90 số hạng nên khi ta nhóm 3 số hạng thành 1 nhóm sẽ vừa đủ 30 nhóm và không dư ra số nào.
A = (2^1+2^2+2^3)+(2^4+2^5+2^6)+...+(2^88+2^89+2^90)
= 2(1+2+2^2)+2^4(1+2+2^2)+...+2^88(1+2+2^2)
= 2.7+2^4.7+...+2^88.7
= 7(2+2^4+...+2^88) chia hết cho 7
Ta có : A = 2^1 + 2^2 + 2^3 + ... + 2^89 + 2^90
2A = 2^2 + 2^3 + 2^4 + ... + 2^90 + 2^91
2A - A = (2^2 + 2^3 + 2^4 + ... + 2^90 + 2^91) - (2^1 + 2^2 + 2^3 + ... + 2^89 + 2^90)
A = 2^91 - 2
Do dãy A có 90 số hạng nên khi ta nhóm 3 số hạng thành 1 nhóm sẽ vừa đủ 30 nhóm và không dư ra số nào.
A = (2^1+2^2+2^3)+(2^4+2^5+2^6)+...+(2^88+2^89+2^90)
= 2(1+2+2^2)+2^4(1+2+2^2)+...+2^88(1+2+2^2)
= 2.7+2^4.7+...+2^88.7
= 7(2+2^4+...+2^88) chia hết cho 7
Ta có : A = 2^1 + 2^2 + 2^3 + ... + 2^89 + 2^90
2A = 2^2 + 2^3 + 2^4 + ... + 2^90 + 2^91
2A - A = (2^2 + 2^3 + 2^4 + ... + 2^90 + 2^91) - (2^1 + 2^2 + 2^3 + ... + 2^89 + 2^90)
A = 2^91 - 2
a)đặt tên biểu thức là C . Ta có :
C = 1 + 4 + 42 + 43 + ... + 42012
C = ( 1 + 4 + 42 ) + ( 43 + 44 + 45 ) + ... + ( 42010 + 42011 + 42012 )
C = 21 + 43 . ( 1 + 4 + 42 ) + ... + 42010 . ( 1 + 4 + 42 )
C = 21 + 43 . 21 + ... + 42010 . 21
C = 21 . ( 1 + 43 + ... + 42010 )
=> C chia hết cho 21
b) đặt tên biểu thức là B . Ta có :
B = 1 + 7 + 72 + ... + 7101
B = ( 1 + 7 ) + ( 72 + 73 ) + ... + ( 7100 + 7101 )
B = 8 + 72 . ( 1 + 7 ) + ... + 7100. ( 1 + 7 )
B = 8 + 72 . 8 + ... + 7100 . 8
B = 8 . ( 1 + 72 + ... + 7100 )
=> B chia hết cho 8
tương tự
Cho \(A=2+2^2+2^3+2^4+...+2^{60}\)
Chứng tỏ
a, A chia hết cho 3
b, A chia hết cho 5
c, A chia hết cho 7
a) \(A=2+2^2+2^3+2^4+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(2+1\right)+2^3\left(2+1\right)+...+2^{59}\left(2+1\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(A⋮3\)
b) \(A=2+2^2+2^3+2^4+...+2^{60}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)
\(=2\left(1+2^2\right)+2^2\left(1+2^2\right)+...+2^{58}\left(1+2^2\right)\)
\(=5\left(2+2^2+...+2^{58}\right)⋮5\)
Vậy \(A⋮5\)
c) \(A=2+2^2+2^3+2^4+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+..+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
Vậy \(A⋮7\)
Mn trình bày ra nha mk đang cần gấp