Trăm sự nhờ bà con :(( Em cảm ơn nhiều lắm
Tìm giá trị lớn nhất của biểu thức P=3x2-4x/(x-1)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
5-/3x-4/
ta có: /3x-4/\(\ge0,\forall x\)
\(\Rightarrow\)5-/3x-4/\(\le5\)
Dấu "=" xảy ra khi 3x-4=0 =>3x=4 =>\(x=\frac{3}{4}\)
Vậy GTNL của 5-/3x-4/ là 5 với x=\(\frac{3}{4}\)
\(\left(4x-6\right)^{2008}+8\)
ta có: \(\left(4x-6\right)^{2008}\ge0,\forall x\)
\(\Rightarrow\left(4x-6\right)^{2008}+8\ge8\)
dấu "=" xảy ra khi (4x-6)2008=0
=> 4x-6=0 =>4x=6 =>x=\(\frac{3}{2}\)
vậy GTNN của (4x-6)2008 là 8 với x=\(\frac{3}{2}\)
x^2+4x+7=x^2+4x+4+3=(x+2)^2+3>=3
=>A<=1/3
Dấu = xảy ra khi x=-2