K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

A =2 +22 +23 +...+2100

2A =22+23 +24 +.....+2101

A =2A-A = 2101 - 2

Để  2A+3 = 3n

=> 2102 - 4 +3 =3n

=>2102 -1 =3n 

22 tháng 1 2016

Ta có: 3A=32+33+...+3101

3A-A=2A=(32+33+...+3101)-(3+32+...+3100)

2A=3101-3

A=\(\frac{3^{101}-3}{2}\)

=>2A+3=2.\(\frac{3^{101}-3}{2}\)+3

            =(3101-3)+3

           =3101

Mà 2A+3=3n

=>3101=3n

=>n=101

22 tháng 1 2016

A=3+32+33+...+3100

2A=(3+32+33+...+3100)x2

2A=32+33+34...+3101

2A-A=3101-3

mà 3n=2A+3=3101-3+3=3101

suy ra n=101

17 tháng 9 2018

Ta có \(A=3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow3A-A=3^{101}-3\)

\(2A=3^{101}-3\)

Ta có \(2A+3=3^n\)

hay \(3^{101}-3+3=3^n\)

\(3^{101}=3^n\)

\(n=101\)

A=3+32+33+.....+3100

3a=3.(3+32+33+....+3100)

3A=32+33+34+....+3101

3A-A=(32+33+34+....+3101)-(3+32+33+.....+3100)

2A=3101-3

2A+3=3101-3+3

2A+3=3101

3n=3101

=>n\(\in\)(101)

Chúc bn học tốt

24 tháng 4 2016

A=\(3+3^2+3^3+...+3^{100}\)

3A=\(3^2+3^3+3^4+...+3^{101}\)

3A - A=\(3^2+3^3+3^4+...+3^{101}-3-3^2-3^3-...-3^{100}\)

 2A = \(3^{101}-3\)

 =>\(2A+3=3^n\)

 =>\(3^{101}-3+3=3^n\)

 =>3\(^{101}=3^n\)

=>n=101

có A=3+3^2+3^3+..+3^100

3A=3.3+3^2.3+3^3.3+..+3^100.3

3A=3^2+3^3+3^4+..+3^101
⇒2A=(3^2+3^3+3^4+..+3^101)-(3+3^2+3^3+..+3^100)

2A=3^101-3

LẤY 3^101-3+3=3^n

3^101=3^n

⇒n=101

15 tháng 6 2021

Ta có A = 3 + 3^2 + 3^3 + ... +3^{100}A=3+32+33+...+3100 (1)

3A = 3^2 + 3^3 + ... +3^{100} + 3^{101}3A=32+33+...+3100+3101 (2)

Lấy (2) trừ (1) được 2A = 3^{101} - 32A=31013.

Do đó, 2A + 3 = 3^{101}2A+3=3101

Mà theo đề bài 2A + 3 = 3^n2A+3=3n.

Vậy n = 101n=101.

28 tháng 9 2020

Ta có:

\(A=3+3^2+3^3+...+3^{100}\)

=> \(3A=3^2+3^3+3^4+...+3^{101}\)

=> \(3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)

<=> \(2A=3^{101}-3\)

Thay vào PT ta được: \(2A+3=3^n\)

\(\Rightarrow3^n=3^{101}-3+3=3^{101}\)

\(\Rightarrow n=101\)

28 tháng 9 2020

Ta có A = 3 + 32 + 33 + ... + 3100

=> 3A = 32 + 33 + 34 + .... + 3101

Khi đó 3A - A = (32 + 33 + 34 + .... + 3101) - (3 + 32 + 33 + ... + 3100)

            => 2A = 3101 - 3

Lại có 2A + 3 = 3n

=> 3101 - 3 + 3 = 3n

=> 3101 = 3n

=> n = 101

Vậy n = 101

15 tháng 8 2015

=>3A=32+32+…+3101

=>3A-A=32+33+…+3101-3-32-…-3100

=>2A=3101-3

=>2A+3=3101=3N

=>N=101

Vậy N=101

15 tháng 8 2015

3A = \(3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)\)- \(\left(3+3^2+3^3+..+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\Rightarrow2A+3=3^{101}\)
Vậy n = 101

26 tháng 11 2015

A = 3 + 32 + 33 + 3+ . . . + 3100

3A = 32 + 33 + 34 + . . . + 3101

=> 3A - A = 3101 - 3

           2A = 3101 - 3

=> 2A + 3 = 3101

Mà : 2A + 3 = 3n

=> n = 101

Vậy : n = 101

22 tháng 8 2018

\(3A=3^2+3^3+...+3^{101}\)

\(3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)

\(2A=3^{101}-3\)

\(\Rightarrow3^{101}-3+3=3^n\)

\(\Rightarrow3^{101}=3^n\)

\(\Rightarrow n=101\)

22 tháng 8 2018

Ta có: \(a=3+3^2+3^3+...+3^{100}\)

\(\Leftrightarrow3.a=3^2+3^3+3^4+...+3^{101}\)

\(\Leftrightarrow3.a-a=3^{101}-3\)

\(\Leftrightarrow a=\frac{3^{101}-3}{2}\)

-Có: 2a + 3 = 3n

 => \(2.\frac{3^{101}-3}{2}+3=3^n\)ơ

\(\Leftrightarrow3^{101}-3+3=3^n\)

\(\Leftrightarrow3^{101}=3^n\)

\(\Leftrightarrow n=101\)

Vậy n = 101.

A=3+32+33+...+3100

=>3A=32+33+34+...+3101

=>3A-A=(32+33+34+...+3101)-(3+32+33+...+3100)

=>2A=3101-3

=>2A+3=3101-3+3=3101=3n

=>n=101

4 tháng 11 2015

suy ra 3.A=3^2+...+3^101

3A-A=(3^2+...+3^101)-(3+...+3^100)

2A=3^101-3

A=(3^101-3):2

2A+3=(3^101-3):2.2+3

          =3^101-3+3

          =3^101

3^x=3^101

Vậy x =101