Tìm GTNN \(A=x^2-2xy+6y^2-12x+2y+45\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x2 - 2xy + 6y2 - 12x + 2y + 45
= (x2 - 2xy + y2 - 12x + 12y + 36) + (5y2 - 10y + 5) + 4
= [(x - y)2 - 12(x - y) + 6^2] + 5(y2 - 2y + 1) + 4
= (x - y - 6)2 + 5(y - 1)2 + 4
Vì (x - y - 6)2 >= 0 với mọi x, y
5(y2 - 1) >= 0 với mọi y
=> Amin = 4 <=> y = 1, x = 7
\(A=x^2-2xy+6y^2-12x+2y+45\)
\(A=\left(x^2-2xy+y^2-12x+12y+36\right)+\left(5y^2-10y+5\right)+4\)
\(A=\left[\left(x-y\right)^2-12.\left(x-y\right)+6^2\right]+5\left(y^2-2y+1\right)+4\)
\(A=\left(x-y-6\right)^2+5.\left(y-1\right)^2+4\)
Vì \(\left(x-y-6\right)^2\ge0\forall x,y\)
\(5.\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow A_{Min}=4\Leftrightarrow y=1,x=7\)
Tìm GTNN chủa biểu thức:
a, A=x2+6y2-2xy-12x+2y+45
b, B=x2-2xy+3y2-2xy-10y+20
c, C=x2+4y2-2xy-10x+4y+32
x^2 - 2xy + 6y^2 - 12x + 2y +45
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45
= (x - y - 6)^2 + 5y^2 - 10y + 9
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4
= (x - y - 6)^2 + 5.(y-1)^2 + 4
=>> MIN = 4 khi (x;y) = {(7;1)}
\(A=x^2-2xy+6y^2-12x+3y+45\)
\(A=x^2-2x\left(y+6\right)+6y^2+3y+45\)
\(A=x^2-2x\left(y+6\right)+y^2+2.y.6+36+5y^2-9y+9\)
\(A=x^2-2x\left(y+6\right)+\left(y+6\right)^2+5\left(y^2-2.y.\frac{9}{10}+\frac{81}{100}\right)-\frac{81}{20}+9\)
\(A=\left(x-y-6\right)^2+5\left(y-\frac{9}{10}\right)^2-\frac{99}{20}\)
Ta thấy: \(\left(x-y-6\right)^2\ge0;5\left(y-\frac{9}{10}\right)^2\ge0\forall x;y\)
\(\Rightarrow A\ge-\frac{99}{20}.\)Vậy \(Min_A=-\frac{99}{20}.\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-6=0\\y-\frac{9}{10}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=6\\y=\frac{9}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{69}{10}\\y=\frac{9}{10}\end{cases}}.\)
Xin lỗi, \(Min_A=\frac{99}{20}\)nha bạn, vì \(-\frac{81}{20}+9=-\left(\frac{81}{20}-9\right)=-\left(-\frac{99}{20}\right)=\frac{99}{20}.\)
\(A=x^2-2xy+6y^2-12x+2y+45\)
\(A=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
GTNN của A = 4 khi và chỉ khi \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}y=1\\x=7\end{cases}}\)