( x-2)(x+3) < 0 tìm x
giúp mik nha =))))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (2 - x).(4/5 - x) < 0
=> 2 - x và 4/5 - x là 2 số trái dấu
Mà 2 - x > 4/5 - x
=> 2 - x > 0; 4/5 - x < 0
=> 2 > x; 4/5 < x
Vậy 4/5 < x < 2 thỏa mãn đề bài
b) lm tương tự
Bài này ta ko tìm ra giá trị cụ thể vì x thuộc Q, ko fai thuộc Z
\(\left(x^2+5\right)\left(x-3\right)>0\)
Th1 : \(\hept{\begin{cases}x^2+5>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>-5\\x< 3\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x^2+5< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x^2< -5\\x>3\end{cases}}}\)
a) \(\left(x^2+5\right)\left(x-3\right)>0\Leftrightarrow x-3>0\) (do \(x^2+5>0,\forall x\in R\)).
\(\Leftrightarrow x>3\).
b) \(\left(-x^2-17\right).\left(x+1\right)>0\Leftrightarrow-\left(x^2+17\right).\left(x+1\right)>0\)\(\Leftrightarrow-\left(x+1\right)>0\) ( do \(x^2+17>0\) ).
\(\Leftrightarrow x+1< 0\Leftrightarrow x< -1\).
c) \(-2\left(7-x\right)< 0\Leftrightarrow2x-14< 0\)\(\Leftrightarrow2x< 14\)\(\Leftrightarrow x< 7\).
d) \(\left(x-2\right).\left(x+2\right)< 0\Leftrightarrow x^2+2x-2x-4< 0\)\(\Leftrightarrow x^2-4< 0\) \(\Leftrightarrow x^2< 4\)\(\Leftrightarrow\left|x\right|< 2\)\(\Leftrightarrow-2< x< 2\).
Ta có: \(\left(x^2+7\right)\left(x^2-49\right)< 0\)
\(\Rightarrow\)\(\hept{\begin{cases}x^2+7< 0\\x^2-49>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+7>0\\x^2-49< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^2< -7\\x^2>49\end{cases}}\)(vô lí) hoặc \(\hept{\begin{cases}x^2>-7\\x^2< 49\end{cases}}\)(thỏa mãn)
\(\Rightarrow-7< x^2< 49\)( \(\forall x\ge0\))
\(\Rightarrow0\le x< \sqrt{49}\)
\(\Rightarrow0\le x< 7.\)
chia ra làm 2 trường hợp
Trường hợp 1
- x2 + 7 < 0
- x2 – 49 > 0
Suy ra đc : x < cộng trừ căn 7, x > cộng trừ 7(vô lí)
trường hợp 2
- x2 +7 > 0
- x2 – 49 < 0
Suy ra đc: công trừ căn 7 < x < cộng trừ 7
Vậy công trừ căn 7 < x < cộng trừ 7
Mk chỉ nói z thôi, b tự trình bày
\(\left(2x-2\right).\left(3x-9\right)< 0\Leftrightarrow2\left(x-1\right).3\left(x-3\right)< 0\)
\(\Leftrightarrow6\left(x-1\right)\left(x-3\right)< 0\Leftrightarrow\orbr{\begin{cases}x-1< 0;x-3>0\\x-1>0;x-3< 0\end{cases}}\)
Mà \(x-1>x-3\Rightarrow\hept{\begin{cases}x-1>0\\x-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x< 3\end{cases}}\Leftrightarrow1< x< 3\Leftrightarrow x=2\)
Vậy \(x=2\)