Tìm giới hạn :
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
Dự đoán
Chứng minh dự đoán trên bằng quy nạp (bạn đọc tự chứng minh).
Từ đó
\(\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{x+1}-\sqrt{4-x}}{x}=\lim\limits_{x\rightarrow0}\dfrac{4\left(x+1\right)-\left(4-x\right)}{x\left(2\sqrt{x+1}+\sqrt{4-x}\right)}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{5x}{x\left(2\sqrt{x+1}+\sqrt{4-x}\right)}=\lim\limits_{x\rightarrow0}\dfrac{5}{2\sqrt{x+1}+\sqrt{4-x}}=\dfrac{5}{4}\)
Ta có : \(A=lim_{x\rightarrow1}\dfrac{\sqrt{2x-1}-x}{x^2-1}=lim_{x\rightarrow1}\dfrac{2x-1-x^2}{\left(x^2-1\right)\left(\sqrt{2x-1}+x\right)}\) \(=lim_{x\rightarrow1}\dfrac{-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)\left(\sqrt{2x-1}+x\right)}\) \(=lim_{x\rightarrow1}\dfrac{1-x}{\left(x+1\right)\left(\sqrt{2x-1}+x\right)}=0\)
Dễ thấy \(u_n>0,\forall n\inℕ^∗\).
Ta có \(u_{n+1}-u_n=\dfrac{u_n^2+2021}{2u_n}-u_n=\dfrac{2021-u_n^2}{2u_n}\)
Với \(n\ge2\) thì \(u_n=\dfrac{u_{n-1}^2+2021}{2u_{n-1}}\) \(=\dfrac{u_{n-1}}{2}+\dfrac{2021}{2u_{n-1}}\) \(>2\sqrt{\dfrac{u_{n-1}}{2}.\dfrac{2021}{2u_{n-1}}}\) \(=\sqrt{2021}\)
Vậy \(u_n>\sqrt{2021},\forall n\ge2\), suy ra \(u_{n+1}-u_n=\dfrac{2021-u_n^2}{2u_n}< 0,\forall n\inℕ^∗\)
\(\Rightarrow\) Dãy \(\left(u_n\right)\) là dãy giảm. Mà \(u_n>\sqrt{2021}\) \(\Rightarrow\left(u_n\right)\) có giới hạn hữu hạn. Đặt \(\lim\limits_{n\rightarrow+\infty}u_n=L\) \(\Rightarrow L=\dfrac{L^2+2021}{2L}\) \(\Leftrightarrow L=\sqrt{2021}\)
Vậy \(\lim\limits_{n\rightarrow+\infty}u_n=\sqrt{2021}\)
Dễ thấy ��>0,∀�∈N∗un>0,∀n∈N∗.
Ta có ��+1−��=��2+20212��−��=2021−��22��un+1−un=2unun2+2021−un=2un2021−un2
Với �≥2n≥2 thì ��=��−12+20212��−1un=2un−1un−12+2021 =��−12+20212��−1=2un−1+2un−12021 >2��−12.20212��−1>22un−1.2un−12021 =2021=2021
Vậy ��>2021,∀�≥2un>2021,∀n≥2, suy ra ��+1−��=2021−��22��<0,∀�∈N∗un+1−un=2un2021−un2<0,∀n∈N∗
⇒⇒ Dãy (��)(un) là dãy giảm. Mà ��>2021un>2021 ⇒(��)⇒(un) có giới hạn hữu hạn. Đặt lim�→+∞��=�n→+∞limun=L ⇒�=�2+20212�⇒L=2LL2+2021 ⇔�=2021⇔L=2021
Vậy lim�→+∞��=2021n→+∞limun=2021