Tìm a để \(\overline{11a}\) là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a = 3 hoặc a = 9
( Bảng thừa số nguyên tố cuối sách giáo khoa Toán 6 trang 128 )
Nhớ k cho mk nhé! Thank you
Gọi d là ước chung của (11a + 2b) và (18a + 5b)
\(\Rightarrow\)(11a + 2b) chia hết cho d và (18a + 5b) chia hết cho d
\(\Rightarrow\)18(11a + 2b) và 11(18a + 5b) chia hết cho d
\(\Rightarrow\)11(18a + 5b) - 18(11a + 2b) = 19b chia hết cho d
\(\Rightarrow\)19 chia hết cho d hoặc b chia hết cho d (1)
Tương tự ta cũng có: 5(11a + 2b) và 2(18a + 5b) chia hết cho d
\(\Rightarrow\)5(11a + 2b) - 2(18a + 5b) = 19a chia hết cho d
\(\Rightarrow\)19 chia hết cho d hoặc a chia hết cho d (2)
Từ (1) và (2) suy ra d là dược của 19 hoặc d là ước chung của a và b
\(\Rightarrow\)d = 19 hoặc d = 1
Vậy ước chung của (11a + 2b) và (18a + 5b) là 19 và 1
PS: Nếu đề bài bảo tìm ước chung lớn nhất thì đó là 19 nhé
Ta có : \(\overline{ab}-\overline{ba}=\) (10a +b) \(-\) (10b +a) \(=\) 10a + b \(-\) 10b \(-\) a \(=\) 9a \(-\) 9b
\(=\) 9(a\(-\)b) \(=\) 32(a\(-\)b)
=> a, b ∉ {1;2;3;4;5;6;7;8;9} => 1 ≤ a- b ≤ 8
Để \(\overline{ab}-\)\(\overline{ba}\) là số chính phương thì a – b = 1; 4
+) a – b = 1 (mà a > b) ta có các số \(\overline{ab}\) là : 98 ; 87 ; 76; 65; 54 ; 43; 32; 21
Vì \(\overline{ab}\) là số nguyên tố nên chỉ có số 43 thoả mãn
+) a – b = 4 (mà a > b) ta có các số \(\overline{ab}\) là : 95 ; 84 ; 73; 62; 51
Vì \(\overline{ab}\) là số nguyên tố nên chỉ có số 73 thoả mãn
Vậy có hai số thoả mãn điều kiện bài toán là 43 và 73
vì abcd,ab,ac là số nguyên tố nên là số lẻ hay b,c,d lẻ và khác 5. Ta có :
b2 = cd + b - c \(\Rightarrow\)b ( b - 1 ) = cd - c = 10c + d - c = 9c + d \(\ge\)10
\(\Rightarrow\)b \(\ge\)4 \(\Rightarrow\) b = 7 hoặc b = 9
+) b = 7 ta có : 9c + d = 42 \(\Rightarrow\)d \(⋮\)3 \(\Rightarrow\)d = 3 hoặc d = 9
Nếu d = 3 thì c = \(\frac{39}{9}\)( loại )
Nếu d = 9 thì c = \(\frac{33}{9}\)( loại )
+) b = 9 thì 9c + d = 72 \(\Rightarrow\)d = 9 ; c = 7
Mà a7 và a9 là số nguyên tố thì a = 1
Vậy abcd = 1979
Gọi d là ƯCLN của 11a +2b và 18a +5b => 11a +2b chia hết cho d và 18a +5b chia hết cho d
=> 18.(11a + 2b) chia hết cho d và 11(18a + 5b) chia hết cho d
=> 11(18a + 5b) - 18.(11a + 2b) chia hết cho d => 19 b chie hết cho d => 19 chia hết cho d hoặc b chia hết cho d => d là ước của 19 hoặc d là ước của b
tương tự ta cũng có 5.(11a + 2b) chia hết cho d và 2(18a + 5b) chia hết cho d
=> 5.(11a + 2b) - 2(18a + 5b) chia hết cho d => 19a chia hết cho d => 19 chia hết cho d hoặc a chia hết cho d => d là ước của 19 hoặc d là ước của a (2)
Từ (1) và (2) suy ra d là ước của 19 hoặc d là ước chung của a và b => d = 19 hoặc d = 1
Vậy ƯCLN của 11a + 2b và 18a + 5b là 19 hoặc 1
chi tiêt thêm: ta có a.b = BCNN (a,b).ƯCLN(a,b) = 84.14 =1176
ƯCLN(a,b) = 14 nên a = 14c, b = 14d ( c và d nguyên tố cùng nhau)
=> 14c. 14d = 14 . 84 => c.d = 6
Vì a>b nên c>d , chọn hai số c, d nguyên tố cùng nhau có tích bằng 6 ta có c = 6, d = 1 hoặc c = 3, d = 2
*) với c = 6, d = 1 => a = 14.6 = 84, b = 14.1 = 14
*) với c = 3, d = 2 => a = 14 . 3 = 42, b = 14 .2 = 28
a=3
a=7