Tinh gia tri bieu thuc
\(A=\frac{x+y}{x-y}\)biet \(2x^2+2y^2=5xy\) va 0<x<y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x2+2y2=5xy
<=>2x2-5xy+2y2=0
<=>(2x2-4xy)-(xy-2y2)=0
<=>2x(x-2y)-y(x-2y)=0
<=>(x-2y)(2x-y)=0
<=> x-2y=0 hoặc 2x-y=0
*)Nếu x-2y=0=>x=2y
=>E=\(\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)
*)Nếu 2x-y=0=>2x=y
=>E=\(\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)
Ta có: x>y>0
\(\Rightarrow\hept{\begin{cases}x+y>0\\x-y>0\end{cases}}\)
\(\Rightarrow E=\frac{x+y}{x-y}>0\)
Ta có : E\(=\frac{x+y}{x-y}\)
\(\Rightarrow E^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{x^2+2xy+y^2}{x^2-2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{2\left(x^2-2xy+y^2\right)}=\frac{2x^2+4xy+2y^2}{2x^2-4xy+2y^2}\)\(=\frac{5xy+4xy}{5xy-4xy}=\frac{9xy}{xy}=9\)
\(\Rightarrow E=\sqrt{9}\)( do E>0)
\(\Leftrightarrow E=3\)
a/ \(M=x^4-xy^3+x^3y-y^4-1\)
\(\Leftrightarrow M=x^3\left(x+y\right)-y^3\left(x+y\right)-1\)
Mà \(x+y=0\)
\(\Leftrightarrow M=x^3.0-y^3.0-1\)
\(\Leftrightarrow M=-1\)
Vậy ...
b, Ta co: \(x^3+xy^2-x^2y-y^3+3\)
\(=\left(x^3-y^3\right)+\left(xy^2-x^2y\right)+3\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)-xy\left(x-y\right)+3\)
= 3 ( vì x-y = 0)
\(A=\frac{1}{2}x^4+x^2y^2+\frac{1}{2}y^4-2x^2y^2\)
\(=\frac{1}{2}\left(x^4-2x^2y^2+y^4\right)=\frac{1}{2}\left(x^2-y^2\right)^2=\frac{1}{2}.4^2=8\)
\(2x^2+2y^2=5xy\)
=>\(2\left(x^2+2xy+y^2\right)=7xy\Leftrightarrow\left(x+y\right)^2=\frac{7xy}{2}\)
=>\(2\left(x^2-2xy+y^2\right)=xy\Leftrightarrow\left(x-y\right)^2=\frac{xy}{2}\)
\(A^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{7}{4}\)
Vì 0<x<y => A <0
=> A = \(\frac{\sqrt{7}}{2}\)