K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

\(A=2+x+y+\frac{1}{x}+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}=2+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)

Áp dụng cô-si cho từng cặp là ok,,,,

Riêng cặp cuối \(x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2}\Leftrightarrow-\left(x+y\right)\ge-\sqrt{2}\)

22 tháng 8 2017

Áp dụng BĐT AM-GM ta có:

\(S=x+y+\frac{1}{x}+\frac{1}{y}\)

\(=x+\frac{4}{9x}+y+\frac{4}{9y}+\frac{5}{9}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\ge2\sqrt{x\cdot\frac{4}{9x}}+2\sqrt{y\cdot\frac{4}{9y}}+\frac{5}{9}\cdot\frac{4}{x+y}\)

\(\ge2\cdot\frac{2}{3}+2\cdot\frac{2}{3}+\frac{5}{9}\cdot\frac{4}{\frac{4}{3}}=\frac{13}{3}\)

Khi \(x=y=\frac{2}{3}\)

22 tháng 2 2019

giải đi ?

22 tháng 2 2019

Áp dụng bất đẳng thức Cô-si ta có : 

\(P=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}\)

                                                       \(=\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{xy}}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{xy}}\)

                                                                                            \(\ge\frac{2\sqrt{\sqrt{x}.\sqrt{y}}\left(x+y-\frac{x+y}{2}\right)}{\sqrt{xy}}\)

                                                                                            \(=\frac{x+y}{\sqrt[4]{xy}}\ge\frac{x+y}{\sqrt{\frac{x+y}{2}}}=\frac{1}{\sqrt{\frac{1}{2}}}=\sqrt{2}\)

Dấu "=" khi x = y = 1/2

19 tháng 6 2017

Theo bất đẳng thức cosi \(\frac{1}{x}\)+  \(\frac{1}{y}\)\(\ge\)2\(\sqrt{\frac{1}{x}\times\frac{1}{y}}\)\(\frac{2}{\sqrt{xy}}\)\(\ge\)\(\frac{2}{\frac{x+y}{2}}\)=  \(\frac{4}{x+y}\)

Mà theo đầu bài ta có  x + y = 2a

=>   Min a = \(\frac{4}{x+y}\)=  \(\frac{4}{2a}\)=  \(\frac{2}{a}\)

10 tháng 1 2019

Áp dụng BĐT Bunhiacopxki

\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\sqrt{\frac{1}{x}}\right)^2+\left(\sqrt{\frac{1}{y}}\right)^2\right]\ge\left(\sqrt{x}.\frac{1}{\sqrt{x}}+\sqrt{y}.\frac{1}{\sqrt{y}}\right)^2=4\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge4:\left(x+y\right)=\frac{4}{2a}=\frac{2}{a}\)

Vậy

20 tháng 1 2022

\(A=x+\frac{1}{y}+\frac{4}{x-y}\)

\(A=x-y+\frac{4}{x-y}+y+\frac{1}{y}\)

Do \(x>y\Leftrightarrow x-y>0\)nên ta có thể áp dụng bất đẳng thức Cô-si cho 2 số dương \(x-y\)và \(\frac{4}{x-y}\)

Ta được \(x-y+\frac{4}{x-y}\ge2\sqrt{\left(x-y\right).\frac{4}{x-y}}=4\)

Vì \(y>0\)nên ta áp dụng bất đẳng thức Cô-si cho 2 số dương \(y\)và \(\frac{1}{y}\), ta có:

\(y+\frac{1}{y}\ge2\sqrt{y.\frac{1}{y}}=2\)

Vậy \(A=x-y+\frac{4}{x-y}+y+\frac{1}{y}\ge4+2=6\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=\frac{4}{x-y}\\y=\frac{1}{y}\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=4\\y^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=2\left(x-y>0\right)\\y=1\left(y>0\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)

Vậy GTNN của A là 6 khi \(\hept{\begin{cases}x=3\\y=1\end{cases}}\)

4 tháng 2 2019

Áp dụng BĐT Minicopski ta có:

\(T=\sqrt{x^4+\frac{1}{x^4}}+\sqrt{y^2+\frac{1}{y^2}}\ge\sqrt{\left(x^2+y\right)^2+\left(\frac{1}{x^2}+\frac{1}{y}\right)^2}\)

\(\ge\sqrt{1^2+\left(\frac{4}{x^2+y}\right)^2}=\sqrt{1+\left(\frac{4}{1}\right)^2}=\sqrt{17}\)

Nên GTNN của T là \(\sqrt{17}\) khi \(\hept{\begin{cases}x=\sqrt{\frac{1}{2}}\\y=\frac{1}{2}\end{cases}}\)