Cho đường tròn (O), dây AB cố định không đi qua O; Lấy hai điểm C và D thuộc
dây AB sao cho AC = CD = DB. Các bán kính qua C và D cắt cung nhỏ AB tại E và
F.
a) Chứng minh AE < EF
b) Một điểm M di động trên đường tròn (O), điểm P thuộc đoạn thẳng AM, điểm Q
thuộc đoạn thẳng BM sao cho AP = BQ. Chứng minh đường trung trực của PQ luôn
đi qua điểm cố định.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
VA
0
6 tháng 2 2021
Ta có PQI = PIA ( cùng chắn PI) nên ΔAPI ~ΔAIQ(g.g)
=> AP/AI = AI/AQ =>Ap.AQ= AI^2 ( không đổi )
Giả sử đt ngoại tiếp tấm giác BPQ cắt AB tại D (D khác B)
Khi đó tam giác ADP ~ tam giác AQB =>AD/AQ = AP/AB
hay AD.AB = AP.AQ=AI^2 ( không đổi)
Do đó điểm D là điểm cố định (đpcm)
29 tháng 4 2023
1: góc MIC+góc MEC=180 độ
=>MICE nội tiếp
2: Xét ΔMCQ và ΔMAC có
góc MCQ=góc MAC
góc CMQ chung
=>ΔMCQ đồng dạng với ΔMAC
=>MC^2=MQ*MA
13 tháng 4 2023
1: góc MIC=góc MEC=90 độ
=>MIEC nội tiếp
2: Xet ΔMCQ và ΔMAC có
góc MCQ=góc MAC
góc CMQ chung
=>ΔMCQ đồng dạng với ΔMAC
=>MC/MA=MQ/MC
=>MC^2=MQ*MA