CMR:\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{2016}}< 2016\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=1/3+1/32+...+1/32017 <1/2
3B=1+1/3+1/32+...1/32016 <1/2
3B-B=(1+1/3+...+1/32016) - (1/3+1/32+...+1/32017)
2B=1-(1/32017)
2B=(32017-1) phần (32017)=>B=(32017-1):2 phần (32017)
Vậy ..........................
Với mọi số nguyên dương n ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)
Ta có: \(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}}\)
\(\Rightarrow\frac{1}{\left(n+1\right)\sqrt{n}}<\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\frac{2}{\sqrt{n}}=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\). Do đó ta có:
\(A<\frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+\frac{2}{\sqrt{3}}-\frac{2}{\sqrt{4}}+...+\frac{2}{\sqrt{2015}}-\frac{2}{\sqrt{2016}}=2-\frac{2}{\sqrt{2016}}<2\)
Vậy A < 2.
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{2006}}\)
\(\Rightarrow A< 1+1+1+...+1\)
\(\Rightarrow A< 2016\)