giải phương trình 5x2 -7x+ 2=0
giúp mình với cảm ơn nhiều ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2-7x+2=0\)
\(x\left(5x-2\right)-\left(5x-2\right)=0\)
\(x\left[5x-2-5x+2\right]=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\0x=0\end{cases}\Rightarrow x=0}\)
<=>5x^2-5x-2x+2=0
<=>(5x^2-5x)-(2x-2)=0
<=>5x(x-1)-2(x-1)=0
<=>(x-1)(5x-2)=0
<=>x-1=0 <=> 5x-2=0
<=>x=1 <=>x=2/5
Dễ nhận thấy pt này có một nghiệm là 1 nên ta sẽ tạo nhân tử là x-1
Ta có: \(2x^4+4x^3-7x^2-5x+6=0\)
<=> \(\left(2x^4-2x^3\right)+\left(6x^3-6x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)
<=> \(2x^3\left(x-1\right)+6x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(2x^3+6x^2-x-6\right)=0\)
<=> \(\orbr{\begin{cases}x=1\\2x^3+6x-x-6=0\end{cases}}\)
Bạn có thể giải pt 2x3+6x-x-6=0 bằng pp Cardano nha, cm dài lắm
Ta tách được \(2x^4+4x^3-7x^2-5x+6=0\Leftrightarrow\left(x-1\right)\left(2x^3+6x-x-6\right)=0\)
Vậy pt có 1 nghiệm x= 1.
Ta giải pt bậc ba theo công thức Cardano:
\(2x^3+6x^2-x-6=0\left(1\right)\Leftrightarrow x^3+3x^2-\frac{1}{2}x-3=0\)
Đặt \(x=y-1\Rightarrow y^3-\frac{7}{2}y-\frac{1}{2}=0\left(2\right)\)
\(\Delta=27\left(\frac{-1}{2}\right)^2-4\left(\frac{7}{2}\right)^3=-\frac{659}{4}< 0\)
Vậy pt (2) có 3 nghiệm phân biệt thuộc khoảng \(\left(-\frac{\sqrt{42}}{3};\frac{\sqrt{42}}{3}\right)\)
Đặt \(y=\frac{\sqrt{42}}{3}cost\left(t\in\left(0;\pi\right)\right)\). Thay vào pt(2) ta có: \(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\)
Ta tìm được 3 nghiệm t thuộc khoảng \(\left(0;\pi\right)\), sau đó tìm cost rồi suy ra y và x.
Cô tìm một nghiệm để giúp em kiểm chứng nhé. Em có thể thay giá trị nghiệm để kiểm tra.
\(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\Rightarrow t=\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\Rightarrow y=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\)
Vậy \(x=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}-1\). Đó là một nghiệm, em có thể tìm 2 nghiệm còn lại bằng cách tương tự.
đk: \(-1\le t\le1\)
Ta có: \(t^2-2\sqrt{1-t^2}=0\)
\(\Leftrightarrow t^2=2\sqrt{1-t^2}\)
\(\Rightarrow t^4=4\left(1-t^2\right)\)
\(\Leftrightarrow t^4+4t^2-4=0\)
\(\Leftrightarrow\left(t^2+2\right)^2=8\)
\(\Rightarrow t^2+2=2\sqrt{2}\left(t^2+2>0\right)\)
\(\Leftrightarrow t^2=2\left(\sqrt{2}-1\right)\)
\(\Rightarrow\orbr{\begin{cases}t=\sqrt{2\left(\sqrt{2}-1\right)}\\t=-\sqrt{2\left(\sqrt{2}-1\right)}\end{cases}}\)
Tìm x:
a) x3 +3x2 - 10x = 0
b) x3 - 5x2 - 14x =0
c) x3 + 5x2- 24x =0
Giải giúp mình với ạ !
Mình cảm ơn !
x3+3x2-10x=0
=>x(3+3.2-10)=0
=>x=0
x3-5x2-14x=0
=>x(3-5.2-14)=0
=>x=0
x3+5x2-24x=0
=>x(3+5.2-24)=0
=>x=0
Câu a)
\(x^3+3x^2-10=0\Rightarrow x\left(x^2+3x-10\right)=0\Rightarrow x\left(x^2-2x+5x-10\right)=0\Rightarrow x\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\Rightarrow x\left(x+5\right)\left(x-2\right)=0\)
\(\Rightarrow x=0;x=5;x=2\)
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x^2-2x}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-2=x^2-2x\)
\(\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\)
Cho mình sửa lại nhé:
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-2=x-2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
\(5x^2-7x+2=0\)
\(\Leftrightarrow5x^2-5x-2x+2=0\)
\(\Leftrightarrow5x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\5x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{2}{5}\end{matrix}\right.\)
\(5x^2-7x+2=0\\ \Leftrightarrow5\left(x^2-\frac{7}{5}x+\frac{2}{5}\right)=0\\ \Leftrightarrow x^2-\frac{7}{5}x+\frac{2}{5}=0\\ \Leftrightarrow x^2-x-\frac{2}{5}x+\frac{2}{5}=0\\\Leftrightarrow x\left(x-1\right)-\frac{2}{5}\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-\frac{2}{5}\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-1=0\\x-\frac{2}{5}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{2}{5}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;\frac{2}{5}\right\}\)