K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 3 2020

\(x+y+2=4xy\le\left(x+y\right)^2\)

\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-2\ge0\)

\(\Leftrightarrow\left(x+y+1\right)\left(x+y-2\right)\ge0\)

\(\Leftrightarrow x+y\ge2\)

\(P=x+y+\frac{1}{x+y}=\frac{3\left(x+y\right)}{4}+\frac{x+y}{4}+\frac{1}{x+y}\)

\(P\ge\frac{3.2}{4}+2\sqrt{\frac{x+y}{4\left(x+y\right)}}=\frac{5}{2}\)

Dấu "=" xảy ra khi \(x=y=1\)

15 tháng 3 2020

Ok bạn

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\geq \frac{4}{x^2+xy+y^2+xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1^2}=4\)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=\frac{1}{2}$

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

28 tháng 2 2018

Áp dụng BĐT Cô si cho 2 số dương a,b ta có \(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2.\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=>\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}\)

suy ra \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\).Áp dụng vào bài toán ta có :\(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\ge\dfrac{4}{x^2+xy+y^2+xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\) (Do \(x+y\le1\))

28 tháng 2 2018

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\ge\dfrac{\left(1+1\right)^2}{x^2+2xy+y^2}=\dfrac{4}{\left(x+y\right)^2}\ge\dfrac{4}{1}=4\)

27 tháng 9 2018

ta có:

\(A=\dfrac{xy}{xy}-\dfrac{x-y}{y-x}.\left(\dfrac{x}{x}-\dfrac{y}{y}\right)\\ =1-\dfrac{x-y}{y-x}.\left(1-1\right)\\ =1-\dfrac{x-y}{y-x}.0\\ =1-0\\ =1\)

27 tháng 9 2018

ta có:

xyxyxyyx.(xxyy)

\(1-\dfrac{x-y}{y-x}.\left(1-1\right)\\ =1-\dfrac{x-y}{y-x}.0\\=1-0\\ =1 \)